Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Теорвер.doc
Скачиваний:
69
Добавлен:
22.05.2015
Размер:
1.48 Mб
Скачать

6. Теоремы умножения вероятностей.

Событие А называется независимым от события B, если вероятность события А не зависит от того, произошло событие В или нет.

- критерий независимости событий

События А и В называются независимыми тогда, когда Р(АВ) = Р(А)*Р(В)

Вероятность события А, вычисляемая при условии, что имело место другое событие В, называется условной вероятностью Р(А/В)=P(AB)/P(B).

Свойства условных вероятностей.

Свойства условных вероятностей аналогичны свойствам безусловных вероятностей.

  1. 0  Р(А/В)  1, т.к. ; АВ В, Р(АВ)  Р(В)

  2. Р(А/А)=1

  3. ВА,  Р(А/В)=1

  4. Р[(A+C)/B] = Р(А/В) + Р(C/В) – Если события А и С несовместны

Р[(A+C)/B] = Р(А/В) + Р(C/В) - Р(АC/В) – Если события А и С совместны

Теорема. Вероятность произведения двух событий равна произведению вероятности одного события на условную вероятность другого.

Док-во:

P(AB)=l/n; P(A)=m/n; P(B/A)=l/m; l/n=m/n * l/m => P(AB)=P(A)*P(B/A)

Следствия:

  1. Если событие А не зависит от события В, то и событие В не зависит от события А

  2. Вероятность произведения 2х независимых событий равна произведению вероятностей этих событий.

P(AB)=P(A)*P(B)

7. Формула полной вероятности.

Формула полной вероятности является следствием теории сложения и умножения. Пусть требуется определить вероятность некоторого события А, которое может произойти вместе с событиями H1…Hn, образующих полную группу несовместных событий. Эти события называются гипотезами.

Докажем, что вероятность события А будет вычисляться по формуле:

Доказательство: Т.к. гипотезы Hi образуют полную группу, то событие А может появиться только в комбинации с какой-нибудь из гипотез. Т.к. гипотезы несовместны, то и комбинации будут несовместны, поэтому к ним можно применить теорему сложения:

А=Н1*А+Н2*А+…+Hn*A;

8. Формула Бейеса.

Имеется полная группа несовместных гипотез H1…Hn. Вероятность этих гипотез до опыта известна. Произведен опыт, в результате которого произошло событие А.

Условные вероятности гипотез находятся по формуле:

P(A*Hi)=P(A)*P(Hi/A)=P(Hi)*P(A/Hi);

- Ф-ла Бейеса.

9.Повторение испытаний. Частная теорема о повторении опыта.

На практике часто прилагаются задачи, в которых один и тот же опыт повторяется неоднократно., причем нас интересует не отдельное, а общее число появлений события А в серии опытов. Предположим, что опыты являются независимыми величинами. Независимые опыты могут проводиться в одинаковых или разных условиях. При одинаковых условиях вероятность события А будет одинаковой и к нему относится частная теорема. Если опыты разные, то к нему относится общая теорема о повторении опытов.

Частная теорема:

Вероятность одного сложного события, состоящего в том, что в n испытаниях событие A наступит ровно k раз и не наступит n-k раз, по теореме умножения вероятностей независимых событий равна .Таких сложных событий может быть столько, сколько можно составить сочетаний из n элементов по k элементов, т.е. . Т.к. эти сложные события несовместны, то по теореме сложения вероятностей несовместных событий искомая вероятность равно сумме вероятностей всех возможных сложных событий. Поскольку вероятности всех этих сложных событий одинаковы, то искомая вероятность равна вероятности одного сложного события, умноженной на их число:

. Эта формула называется формулой Бернулли.

Определение вероятностей по формуле Бернулли усложняется при больших значениях n и при малых p или q. В этом случае удобнее использовать приближенные асимптотические формулы. Если , а, но, то в этом случае

Эта формула определяется теоремой Пуассона. Если в схеме Бернулли количество опытов n достаточно велико , а вероятность р события А в каждом опыте постоянно, то вероятностьможет определяться по приближенной формуле Муавра-Лапласа:

,

где ;

- локальная функция Лапласа, которая табулирована и приводится в справочниках. Данная формула отражает, так называемую, локальную теорему Муавра-Лапласа.

Вероятность появления события А не менее m раз при n опытах вычисляется по формуле:

Вероятность появления события А хотя бы один раз при n опытах

Наивероятнейшее число наступление события А в n опытах, в каждом из которых оно может наступить с вероятностью p (и не наступить с вероятностью q=1-p), определяется из двойного неравенства

Если событие А в каждом опыте может наступить с вероятностью p, то количество n опытов, которое необходимо произвести для того, чтобы с заданной вероятностью Рзад. можно было утверждать, что данное событие А произойдет по крайней мере один раз, находится по формуле:

Частная теорема о повторении опытов касается того случая, когда вероятность события А во всех опытах одна и та же.