
- •Предисловие
- •Глава 1. Общие сведения о микропроцессорах
- •1.1 Классификация микропроцессоров
- •1.2 Характеристики микропроцессоров
- •1.2.1 Тактовая частота
- •1.2.2 Архитектура процессора
- •1.2.3 Технологический процесс производства
- •1.2.4 Частота системной шины
- •1.2.5 Размер кэша
- •1.3 Типы архитектур микропроцессоров
- •1.4 Структурная схема микропроцессоров
- •1.4.1 Микропроцессор Фон-Неймана
- •1.4.2 Конвейер
- •1.4.3 Зависимость между частотой и количеством ступеней конвейера
- •1.5 Представление информации в эвм
- •1.5.1 Двоичное представление целых чисел
- •1.5.2 Представление символьной информации
- •Глава 2. Архитектура микропроцессоров ia-32
- •2.1 Состав и функции регистров
- •2.1.1 Основные регистры
- •2.1.2 Регистры дополнительных функциональных модулей
- •2.2 Типы адресации
- •2.3 Система команд
- •2.3.1 Классификация команд
- •2.3.2 Формат команды
- •2.3.3 Однобайтовые команды
- •2.3.4 Непосредственно заданные операнды
- •2.3.5 Команды с регистровыми операндами
- •2.3.7 Команды с операндами, расположенными в памяти
- •Глава 3. Организация многоуровневой памяти
- •3.1 Принцип построения многоуровневой памяти
- •3.2 Организация кэш-памяти
- •3.3 Протоколы когерентности памяти микропроцессоров
- •3.4 Страничная организация памяти
- •Глава 4. Режимы работы процессоров ia-32
- •4.1 Обзор режимов работы
- •4.2 Реальный режим адресации
- •4.3 Защищённый режим
- •4.3.1 Дескрипторные таблицы
- •4.3.2 Дескрипторные регистры
- •4.3.3 Дескриптор
- •4.3.4 Односегментная модель памяти
- •4.3.5 Многосегментная модель памяти
- •Глава 5. Страничная организация памяти в процессорах ia‑32
- •5.1 Каталог страниц
- •5.2 Таблица страниц
- •5.3 Страничная переадресация
- •5.4 Диспетчер виртуальных машин системы Microsoft Windows
- •Глава 6. Архитектура процессоров с параллелизмом уровня команд
- •6.1 Подходы к использованию ресурса транзисторов в микропроцессорах
- •6.2 Суперскалярные процессоры и процессоры с длинным командным словом
- •6.3 Зависимости между командами, препятствующие их параллельному исполнению
- •6.4 Предварительная выборка команд и предсказание переходов
- •6.5 Условное выполнение команд в vliw-процессорах
- •6.6 Декодирование команд, переименование ресурсов и диспетчеризация
- •6.7 Исполнение команд
- •6.8 Завершение выполнения команды
- •6.9 Направления развития архитектуры процессоров с параллелизмом уровня команд
- •Глава 7. Мультитредовые микропроцессоры
- •7.1 Основы мультитредовой архитектуры
- •7.2 Выявление тредов
- •7.3 Мультитредовые процессоры с тредами, выявляемыми путем анализа потоков управления программы
- •7.3.1 Мультитредовая модель выполнения программы
- •7.3.2 Мультитредовые программы
- •7.3.3 Аппаратные средства мультитредовой архитектуры
- •7.3.4 Преимущества мультитредовой архитектуры
- •7.4 Мультитредовые процессоры с тредами, выявляемыми путем анализа потоков данных программы
- •7.5 Специфика мультитредовых моделей распараллеливания
- •Глава 8. Модуль обработки вещественных чисел
- •8.1 Представление чисел с плавающей запятой
- •8.2 Состав модуля fpu
- •Глава 9. Основы 64-разрядной архитектуры
- •9.1 Состав и назначение регистров микропроцессора ia-64
- •9.2 Особенности архитектуры epic
- •9.3 Архитектура x86-64
- •9.4 Структура одноядерного процессора
- •9.5 Многоядерные процессоры
- •9.6 Зачем нужны “лишние” разряды?
- •Глава 10. Современные 64-разрядные микропроцессоры корпораций Intel и amd
- •10.1 Архитектура Intel Core 2
- •10.1.1 Intel Wide Dynamic Execution
- •10.1.2 Intel Intelligent Power Capability
- •10.1.3 Intel Advanced Smart Cache
- •10.1.4 Intel Smart Memory Access
- •10.1.5 Intel Advanced Digital Media Boost
- •10.1.6 Логическая схема процессора
- •10.2 Архитектура Intel Core i7
- •10.2.1 Технология Hyper-Threading в архитектуре Nehalem
- •10.2.2 Иерархия кэш-памяти в архитектуре Nehalem
- •10.3 Хронология развития семейств микропроцессоров с архитектурой Nehalem
- •10.4 Архитектура amd Athlon 64
- •10.4.1 Ядро процессора
- •10.4.3 Контроллер памяти
- •10.4.4 Контроллер HyperTransport
- •10.5 Архитектура amd k10
- •10.4.1 Технология amd Memory Optimizer Technology
- •10.5.2 Ядро процессора
- •10.5.3 Предвыборка данных и инструкций
- •10.5.4 Выборка из кэша
- •10.5.5 Предсказание переходов и ветвлений
- •10.5.6 Процесс декодирования
- •10.5.7 Диспетчеризация и переупорядочение микроопераций
- •10.5.8 Выполнение микроопераций
- •10.5.9 Технологии энергосбережения
- •10.5.10 Шина HyperTransport 3.0
- •10.5.11 Семейство процессоров Barcelona
- •10.5.12 Семейство процессоров Phenom
- •Глава 11. Технологии, поддерживаемые современными микропроцессорами
- •11.1 Технологии тепловой защиты
- •11.1.1 Технология Thermal Monitor
- •11.1.2 Технология Thermal Monitor 2
- •11.1.3 Режим аварийного отключения
- •11.2 Технологии энергосбережения
- •11.2.1 Технология Enhanced Intel SpeedStep
- •11.2.2 Технология Cool'n'Quiet
- •11.3 Технология расширенной памяти
- •11.4 Технология антивирусной защиты
- •11.5 Технология виртуализации
- •11.6 Реализация технологий в современных микроархитектурах
- •11.6.2 Em64t – NetBurst
- •11.6.3 Intel Core
- •11.6.4 Intel Atom
- •11.6.5 Nehalem
- •11.6.6 Xeon
- •Глава 12. Графические микропроцессоры
- •12.1 Основные термины и определения
- •12.2 Технологии построения трёхмерного изображения
- •12.2.1 Технологии повышения реалистичности трехмерного изображения
- •12.3 Шейдерный процессор
- •12.4 Особенности современных графических процессоров
- •Глава 13. Однокристальные микроконтроллеры
- •13.1 Общая характеристика микроконтроллеров
- •13.2 Микроконтроллеры семейства avr
- •Почему именно avr?
- •13.3 Общие сведения об омк avr
- •13.4 Характеристики avr-микроконтроллеров
- •Глава 14. Технология производства микропроцессоров
- •14.1 Особенности производства процессоров
- •14.2 Новые технологические решения
- •14.3 Технология производства сверхбольших интегральных схем
- •I. Выращивание кристалла кремния
- •II. Создание проводящих областей
- •III. Тестирование
- •IV. Изготовление корпуса
- •V. Доставка
- •14.4 Перспективы производства сбис
- •Англо-русский словарь терминов и аббревиатур
- •Библиографический список
- •Интернет-ссылки
- •350072. Краснодар, ул. Московская, 2, кор. А.
9.3 Архитектура x86-64
Архитектура x86-64 с одной стороны совместима с 32-разрядной архитектурой x86, с другой стороны – является 64-разрядной. Согласно кросслицензионному соглашению архитектуру x86-64 развивают и поддерживают корпорации AMD (технология AMD-64) и Intel (технология EM64T).
В настоящее время развивается именно эта архитектура, так как она поддерживает совместимость с IA-32 без внутренней трансляции.
Например, 64-разрядные процессоры семейства Hammer, разработанные фирмой AMD, базируются на архитектуре x86-64, которая является расширением IA-32.
На рисунке 9.2. приведён набор регистров МП AMD. Прежние 32-разрядные регистры, расширенные до 64-бит, получили имена RAX, RBX, RCX, RDX, RBP, RSI, RDI, RSP, RIP и RFLAGS. Новые регистры остались безымянными и просто пронумерованы от R8 до R15. Для обращения к младшим 8-, 16- и 32-битам новых 64-разрядных регистров можно использовать постфиксы b, w и d соответственно (byte, word, dword). Например, R9 – это 64-разряный регистр, R9b – его младший байт (по аналогии с AL), а R9w – младшее слово (то же самое, что AX в EAX). Прямых наследников AH, к сожалению, не наблюдается и для манипуляции со средней частью регистров приходится использовать сдвиги.
В блок SSE в дополнение к восьми 128 разрядным регистрам XMM0-XMM7, введены восемь новых регистров XMM8-XMM15, что обеспечивает поддержку SSE2 путём увеличения количества SIMD команд.
Регистр-указатель команд RIP теперь адресуется точно так же, как и все остальные регистры общего назначения. Однако это не является новинкой. Ещё в PDP-11 (или в её отечественном клоне "Электроника БК" или "УКНЦ") указатель команд был программно доступен.
В таблице 9.2 указаны режимы работы микропроцессоров AMD-64. В режиме совместимости с прежней архитектурой x86 (Legacy Mode) ни 64-битные регистры, ни новые методы адресации недоступны. Однако можно выполнять программы в защищённом, виртуальном и реальном режимах.
Для доступа к 64-битным регистрам и выполнения 64-битных приложений необходимо перевести процессор в "длинный" режим (long mode), который делится на два подрежима: подрежим совместимости с x86 (compatibility mode) и 64-битный подрежим (64-bit mode). Подрежим совместимости предусмотрен только для того, чтобы 64-разрядная операционная система могла выполнять старые 32-битные приложения.
Таблица 9.2. Режимы работы микропроцессоров AMD-64.
Режим работы |
Требуемая операционная система |
Требуется перекомпиляция приложений |
Разрядность |
Регистровые расширения |
Используемые разряды РОНов | ||
адреса |
данных | ||||||
Режим Long |
64-битный подрежим |
64-битная ОС |
Да |
64 |
32 |
Да |
64 |
Подрежим совместимости |
Нет |
32 |
Нет |
32 | |||
16 |
16 |
16 | |||||
Режим Legacy |
Защищённый режим |
32-битная ОС |
Нет |
32 |
32 |
Нет |
32 |
16 |
16 | ||||||
Виртуальный режим |
16-битная ОС |
16 |
16 |
16 | |||
Реальный режим |