
- •Гбоу впо Тверская гма мз зф
- •Ферменты. Строение и механизм действия
- •Кинетика, классификация, ингибирование ферментов
- •Медицинская энзимология
- •2 Модуль. Биологическое окисление. Биохимия питания. Основы рационального питания. Витамины.
- •Водорастворимые витамины
- •Жирорастворимые витамины
- •Цикл трикарбоновых кислот
- •Дыхательная цепь. Биоэнергетика.
- •3 Модуль. Обмен и функции углеводов Химия и функции углеводов. Переваривание углеводов
- •Катаболизм углеводов
- •1) В окислительной стадии происходит две реакции дегидрирования. Кофермент надф восстанавливается до надфн2. Пентозы образуются в результате реакции декарбоксилирования.
- •Нарушения углеводного обмена
- •4 Модуль. Метаболизм и функции липидов Химия и функции липидов. Переваривание липидов
- •Липолиз, окисление жирных кислот. Метаболизм кетоновых тел
- •Биосинтез жирных кислот, фосфолипидов, триглицеридов
- •Регуляция и нарушения липидного обмена
- •5 Модуль. Обмен белков Биологическая ценность белков в питании. Переваривание белков. Гниение белков
- •Общие пути катаболизма аминокислот. Токсичность и обезвреживание аммиака Общие пути катаболизма аминокислот в тканях.
- •2. Пути дезаминирования (-nн2) и трансаминирования.
- •Обмен отдельных аминокислот
- •Строение хромопротеидов. Гемоглобинопатии
- •Синтез и распад гема, патологии пигментного обмена
- •6 Модуль. Обмен нуклеотидов. Матричные синтезы Строение нуклеотидов и полинуклеотидов
- •Обмен нуклеопротеинов. Нарушения обмена нуклеотидов
- •Биосинтез днк, рнк и белка. Регуляция биосинтеза
- •7 Модуль. Биохимия специализированных органов и тканей
- •Электрофореграмма белков плазмы крови
- •Водно-минеральный обмен
- •Селен входит в состав глутатионпероксидазы, поддерживает митохондриальный транспорт электронов, обладает антиканцерогенным действием.
- •Биохимия почек и мочи
Медицинская энзимология
Энзимопатология– раздел медицины, изучающий заболевания, связанные с нарушением функционирования ферментов. Различают энзимопатии:
1) первичные (наследственные), например, фенилкетонурия, галактоземия, гликогенозы и др.
2) вторичные (приобретенные), например, снижение активности пепсина при нарушении выработки соляной кислоты в желудке и др.
Энзимодиагностика– определение активности органоспецифичных ферментов в биологических жидкостях (крови, моче и др.) с целью постановки диагноза заболевания, а также использование ферментных препаратов в качестве реактивов при проведении биохимических анализов. Например, при инфаркте миокарда в сыворотке крови увеличивается активность ЛДГ1, АСТ (аспартатаминотрансфераза), КФК (креатинфосфокиназа, МВ-форма). При поражении поджелудочной железы – амилаза. При заболевании печении – АЛТ (аланинаминотрансфераза).
Энзимотерапия – использование в лечебных целях ферментов и лекарственных средств, влияющих на активность ферментов. Например, пепсин, трипсин применяют для лечения заболеваний желудочно-кишечного тракта; коллагеназу, гиалуронидазу - для обработки ран с интенсивным воспалением с целью предотвращения келоидных рубцов.
2 Модуль. Биологическое окисление. Биохимия питания. Основы рационального питания. Витамины.
Существуют определенные требования, предъявляемые к рациональному питанию человека, которые обеспечивают нормальное протекание биохимических процессов в его организме. Пища должна содержать следующие компоненты: незаменимые аминокислоты и высшие жирные кислоты (линолевая, линоленовая, арахидоновая), витамины и витаминоподобные вещества, минеральные компоненты пищи (макро- и микроэлементы), клетчатку (целлюлоза, пектин, лигнин), воду.
Количество калорий, необходимое человеку, зависит от многих факторов (возраста, пола, типа нервной деятельности, профессии, беременности, лактации и т. д.) и в среднем должно составлять 2200 - 3000 ккал (9200 – 12600 кДж). Несоответствие потребляемых с пищей калорий жизнедеятельности человека может приводить к снижению или, наоборот, увеличению массы тела: избыточное потребление пищи может привести к ожирению, а недостаточное – к истощению.
Установлено, что пища должна содержать рациональное (оптимальное) соотношениебелков, жиров и углеводов, которое распределяется таким образом: основная часть потребляемой пищи приходится на углеводы (58%), 30% составляют липиды и 12% белки.
Суточная потребность в углеводахсоставляет около 400 г. Они являются основным энергетическим материалом, легко метаболизируются (требуют малых затрат кислорода) и конечные продукты обмена (Н2О и СО2) не токсичны. Однако они мало содержат незаменимых компонентов, а при изменении рациональной доли поли- и моносахаров в питании возникают нарушения в метаболизме и развитие различных заболеваний.
Суточная потребность в липидахсоставляет 80 — 100 г. Рациональное соотношение жидких и твердых жиров в питании людей ≈50/50 (около 20 –25 г в сутки должно быть растительных липидов, содержащих ненасыщенные жирные кислоты). Липиды являются наиболее энергоемким компонентом пищи, источником незаменимых жирных кислот и биологически активных веществ (эйкозаноидов). Однако для их окисления требуется много кислорода. Избыток липидов в пище ведет к нарушению их обмена и развитию ряда заболеваний (атеросклероз, ИБС, ожирение).
Суточная потребность в белкеопределяется возрастом, профессией, состоянием организма и составляет ≈ 0,75 г/кг массы тела, причем из них половина должна быть животного происхождения. Белки – это источник азота, незаменимых аминокислот, энергии, но они сложно метаболизируются, а конечные продукты их распада – аммиак и мочевина – весьма токсичны.
Большое значение отводится режиму приемапищи (2-х, 3-х, 4-х разовое питание) и дробности поступления пищи (утро – день – вечер), что обуславливает необходимую секрецию ферментов для ее переваривания. Следует также учитывать индивидуальные привычки и национальные традиции в питании, а также адекватность состава пищи состоянию организма. Например, больным сахарным диабетом необходимо ограничивать потребление углеводов, при заболевании печени и почек необходимо ограничение потребления белков, при атеросклерозе и ИБС – липидов.
Метаболизм этилового спиртавключает следующие основные реакции: преобразование этанола в уксусный альдегид при участии алкогольдегидрогеназы (кофермент НАД) и дальнейшее окисление уксусного альдегида в уксусную кислоту под действием ацетальдегиддегидрогеназы (кофермент НАД). Уксусная кислота превращается в свою активную форму – ацетил-КоА, который может окисляться в цикле Кребса. В связи с простотой метаболизма этилового спирта (необходимо всего два фермента для его окисления до ацетил-КоА) клетки предпочитают легкий способ производства энергии из этого продукта, что ведет к их привыканию к этанолу и, в конечном итоге, к зависимости организма от поступления с пищей алкогольных напитков. При злоупотреблении спиртными напитками нарастает дефицит поступления в организм незаменимых компонентов пищи (незаменимых аминокислот, высших жирных кислот, витаминов, минеральных веществ и клетчатки). Алкогольдегидрогеназа и ацетальдегиддегидрогеназа, конкурируя с другими энзимами за НАД, тормозят многие реакции окисления веществ в клетке. Нарушаются обмены белков, углеводов, фосфолипидов (усиливается распад белков, снижается скорость глюконеогенеза – возникает гипогликемия, интенсивно синтезируются только триглицериды - в результате развивается жировая дистрофия печени).
Витамины отличаются от других органических веществтем, что они не включаются в структуру тканей, не используются в качестве источника энергии, чаще всего выполняют роль коферментов в составе ферментов (B1,B2,B3,B5и др.) или другие специальные функции (A,D,E,K). Витамины в организме превращаются в кофермент, который связывается с апоферментом и образуется активный фермент. Источники витаминов для человека: пищевые продукты; синтез микрофлорой кишечника (K,B1,B3,B6,B9,H).Провитамины– предшественники витаминов. ВитаминA(ретинол) образуется в клетках тонкого кишечника изβ-каротина (провитамин). ВитаминD3(холекальциферол) образуется в клетках кожи из 7-дегидрохолестерина (провитамин).
Антивитамины – по механизму действия это 1) структурные аналоги витаминов, которые конкурируют за связывание с определенным ферментом, например, дикумарол – антивитаминK, снижает свертываемость крови; 2) вещества, которые связывают витамины и не дают образоваться активному ферменту, например, авидин; 3) вещества, которые разрушают витамины, например фермент тиаминаза разрушает витаминB1(тиамин)
Классификация витаминов
I Жирорастворимые
II Водорастворимые
III Витаминоподобные вещества (синтезируются из промежуточных продуктов обмена веществ и выполняют функции, сходные с витаминами)
Жирорастворимые витамины:
- A (антиксерофтальмический), ретинол
- D (антирахитический), кальциферолы
- K (антигеморрарический), нафтохиноны
- E (витамин размножения), токоферолы
Водорастворимые витамины:
- B1(антиневритный), тиамин
- B2(витамин роста), рибофлавин
- B3(антидерматитный), пантотеновая кислота
- B5(PP – антипеллагрический), никотинамид
- B6(антидерматитный), пиридосин
- B9(антианемический), фолиевая кислота
- B12(антианемический), кобаламин
- H (антисеборейный), биотин
- C (антискорбутный), аскорбиновая кислота
- P (капилляроукрепляющий), биофлавоноиды
Витаминоподобные вещества («витамины»):
- F (линолевая, линоленовая, арахидоновая кислоты)
- B4(холин)
- B8(инозит)
- B13(оротовая кислота)
- B15(пангамовая кислота)
- Bт (карнитин)
- N (липоевая кислота)
- коэнзим Q (убихинон)
- Парааминобензойная кислота
- U(S-метил-метионин – противоязвенный фактор)