
Ufimtsev P. Fundamentals of the physical theory of diffraction (Wiley 2007)(348s) PEo
.pdf

7.7 Numerical Calculations of Elementary Edge Waves 193
Figure 7.7 Directivity patterns of elementary edge waves (radiated by the nonuniform/fringe sources) in the bisecting plane. The interval 180◦ ≤ θ ≤ 360◦ relates to the region inside the wedge.
and their linear combinations in the functions U(σ1, ϕ0) and V (σ1, ϕ0) are finite. To treat these singularities, one should apply expressions (7.104) and (7.105), keeping in mind that now γ0 = 45◦ and 2 sin2 γ0 = 1. Together with Equations (7.85) and (7.87), they lead to the following Taylor approximations:
|
U(σ |
, ϕ |
) |
≈ |
π |
cot |
|
π(σ1 + ϕ0) |
|
− |
cot |
|
σ1 + ϕ0 |
+ |
A |
|
− |
B |
(7.122) |
||||||||||||||||||||||||
|
|
|
|
|
2 |
|
|
||||||||||||||||||||||||||||||||||||
|
|
|
1 |
0 |
|
α |
|
|
|
|
2α |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||
and |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
V (σ |
, ϕ |
) |
|
|
|
π |
|
|
|
cot |
π(σ1 + ϕ0) |
|
|
|
|
|
|
1 |
|
|
cot |
σ1 + ϕ0 |
|
|
1 |
(A |
|
B), |
|||||||||||||||
≈ |
α sin σ1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
− sin σ1 |
− |
|||||||||||||||||||||||||
1 |
0 |
|
|
|
|
|
|
|
|
2α |
|
− sin σ1 |
2 |
|
|
|
|
||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(7.123) |
||
where |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
A |
= |
|
π |
|
|
π(σ1 − ϕ0) |
|
+ |
1 |
|
π 3(σ1 − ϕ0)3 |
|
|
|
(7.124) |
|||||||||||||||||||||
|
|
|
|
|
|
|
|
α |
|
45 |
|
|
|
|
|||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
6α |
|
|
|
|
|
|
8α3 |
|
|
|
|
|
|
|
|
|||||||||||||||||
and |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
B |
= |
σ1 − ϕ0 |
+ |
|
1 |
|
|
(σ1 − ϕ0)3 |
. |
|
|
|
|
|
(7.125) |
||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
6 |
45 |
|
|
|
|
|
|
||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
|
|
|
|
|
|
|
|
|
|
TEAM LinG

194 Chapter 7 Elementary Acoustic and Electromagnetic Edge Waves
Figure 7.8 Directivity patterns of elementary edge waves radiated by the nonuniform/fringe sources in the directions of the diffraction cone (ϑ = π − γ0, 0 ≤ ϕ ≤ α).
•For calculation of the field at the diffraction cone (ϑ = π − γ0), the following relationships are useful:
cos σ1 = − cos ϕ, |
cos σ2 = − cos(α − ϕ), |
|
and |
|
|
sin σ1 = | sin ϕ|, |
sin σ2 = | sin(α − ϕ)|. |
(7.126) |
They allow one to simplify functions Vt (σ1, ϕ0) sin ϕ and |
Vt (σ2, α − ϕ0) |
|
sin(α − ϕ), taking into account that |
|
|
sin ϕ/ sin σ1 = sgn(sin ϕ) and sin(α − ϕ)/ sin σ2 = sgn(sin(α − ϕ)). (7.127)
•The numerical calculations confirm that in the region inside the wedge (315◦ ≤
ϕ ≤ 360◦) the total field Fs,h(t) = Fs,h(1) + Fs,h(0) equals zero in the directions of the diffraction cone (ϑ = π − γ0).
7.8ELECTROMAGNETIC ELEMENTARY EDGE WAVES
The theory of acoustic EEWs presented in Sections 7.1 to 7.7 was extended in the work of Butorin et al. (1987) and Ufimtsev (1991) for electromagnetic waves diffracted at
TEAM LinG



198 Chapter 7 Elementary Acoustic and Electromagnetic Edge Waves
Taking into account these equations and the condition ϑ = π − γ0, one can rewrite the above asymptotics (7.147), (7.148) in the form
dEt(0) |
|
|
|
dζ |
|
f (0)(ϕ, ϕ0, α) |
|
e |
ikR |
|
||||||||||
dEt(1) |
= |
Etinc(ζ ) |
f (1)(ϕ, ϕ0, α) |
|
|
, |
(7.151) |
|||||||||||||
|
|
|
|
|
|
|
||||||||||||||
|
|
|
|
|
|
|||||||||||||||
|
(t) |
|
|
2π |
|
|
f (ϕ, ϕ , α) |
|
|
|
R |
|
||||||||
dEt |
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|||
|
(0) |
|
|
|
|
|
|
|
|
g |
(0) |
|
|
|
|
|
ikR |
|
||
dHt |
|
|
|
|
dζ |
|
|
|
(ϕ, ϕ0, α) |
|
e |
|
||||||||
dHt(1) |
|
= |
Htinc(ζ ) |
g(1)(ϕ, ϕ0, α) |
|
. |
(7.152) |
|||||||||||||
|
|
|
||||||||||||||||||
dH |
(t) |
|
|
2π |
|
|
g(ϕ, ϕ , α) |
|
|
|
|
R |
|
|||||||
|
t |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Comparison of these equations with Equations (7.120), (7.121) allows one to establish the following relationships between the acoustic and electromagnetic EEWs for the directions belonging to the diffraction cone:
dEt = dus, |
if Etinc(ζ ) = uinc(ζ ), |
(7.153) |
dHt = duh, |
if Htinc(ζ ) = uinc(ζ ). |
(7.154) |
|
|
|
Notice also that the paper by Ufimtsev (1991) investigates in detail the ray, caustic, and focal asymptotics of electromagnetic EEWs, as well as their multiple and slope diffraction. The results of this investigation are presented below in Chapters 8 to 10.
7.9 IMPROVED THEORY OF ELEMENTARY EDGE WAVES: REMOVAL OF THE GRAZING SINGULARITY
The central idea of PTD is the separation of the surface scattering sources into the uniform and nonuniform components in such a way that they would be the most appropriate for calculation of the scattered field. In the case of scattering objects with edges, the nonuniform component is defined as that part of the field that concentrates near edges. Equations (7.7) and (7.8) determine it as the difference between the total field on the tangential wedge and its geometrical optics part. The latter is considered as the uniform component. As is shown in the present book and in other publications, the utilization of these components is really helpful for investigation of many scattering problems.
However, this is not the case for forward scattering in the directions grazing the edge faces (Fig. 7.9), where the above theory of elementary edge waves predicts infinite values for the functions f (1) = f − f (0) and g(1) = g − g(0). It turns out that for these directions, either function f or f (0) (either g or g(0)) becomes singular. Which of them becomes singular depends on how the grazing direction is approached: ϕ = 0 and then ϕ0 → π , or ϕ0 = π and then ϕ → 0. These singularities indicate that the
TEAM LinG

7.9 Improved Theory of Elementary Edge Waves 199
Figure 7.9 Grazing incidence on the wedge with ϕ0 = π and grazing scattering in the direction ϕ = 0. No singularity exists in the reverse situation, when ϕ0 = 0 and ϕ = π .
definitions (1.31) and (7.7), (7.8) for uniform and nonuniform components are not adequate for the actual surface field in this case. In particular, component jh(1) does not vanish away from the edge, but instead it contains a plane wave there. Besides, component jh(0) includes the absent reflected wave.
To remove the grazing singularity we introduce, in the following, new definitions for components j(0) and j(1), which are more appropriate, when the incident wave illuminates both faces of the edge and propagates in the direction close to the face orientation.
7.9.1 Acoustic EEWs
This theory is based on the paper by Ufimtsev (2006a).
The appropriate candidate for a new definition of jh,s(0) is the field jh,shp induced by the incident wave on the illuminated side of the tangential half-plane. On strip 1 (Fig. 7.3)
of the half-plane ϕ = 0, these components are determined as
jh(0) ≡ jhhp = 2u0 e−ikζ cos γ0 eikξ1 cos2 γ0
× −e−ikξ1 sin |
2 |
|
e−π/4 |
|
∞ |
2 |
2 |
|
, |
|||||
|
γ0 cos ϕ0 |
√ |
|
|
· |
√ |
|
sin γ0 cos |
ϕ0 |
eit dt + e−ikξ1 sin |
|
γ0 cos ϕ0 |
||
|
|
π |
|
|
||||||||||
|
|
|
2kξ1 |
|
|
|||||||||
|
|
|
2 |
|
|
(7.155)
and
j(0) |
≡ |
jhp |
= |
2u |
0 |
e−ikζ cos γ0 eikξ1 cos2 γ0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||
s |
s |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
× ik sin |
γ0 sin ϕ0 e−ik |
ξ1 sin |
2 |
γ0 cos ϕ0 |
e−iπ/4 |
· |
∞ |
|
2 |
|
|||||||||||||||||||
|
|
|
|
|
√ |
|
|
√ |
|
sin γ0 cos |
ϕ0 |
eit dt |
|||||||||||||||||||||
|
|
|
|
|
|
|
|
π |
|||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2kξ1 |
||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
e−iπ/4 eikξ1 sin2 γ0 |
|
|
|
|
|
|
|
|
. |
|||||||||||
|
|
|
|
+ |
|
k |
|
ϕ0 |
|
|
|
|
2 |
|
|
|
|||||||||||||||||
|
|
|
|
|
|
sin |
|
|
|
√ |
|
|
|
|
√ |
|
|
− ik sin γ0 sin ϕ0 e−ikξ1 sin |
|
γ0 cos ϕ0 |
|||||||||||||
|
|
|
|
|
2 |
2 |
|
|
|||||||||||||||||||||||||
|
|
|
|
|
|
π |
|
|
ξ1 |
|
|
|
|
(7.156)
TEAM LinG
|
|
|
|
|
|
7.9 Improved Theory of Elementary Edge Waves |
201 |
||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
designation (7.48). Functions V |
, U |
t |
||||||||
Here, we assume that 0 ≤ ϕ0 ≤ π and utilize the hp |
|
|
hp |
|
|
t |
|
||||||||||||||
are defined in Equations (7.87) and (7.85), but Vt |
and Ut |
are the similar functions |
|||||||||||||||||||
associated with the tangential half-plane: |
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
V hp |
(σ , ψ ) |
= |
|
|
1 |
|
|
cot |
σ + ψ |
+ |
cot |
σ − ψ |
, |
(7.165) |
|||||||
4 sin2 |
γ0 sin σ |
|
|
|
|||||||||||||||||
t |
|
|
|
4 |
|
|
|
|
4 |
|
|
|
|
||||||||
Uhp |
(σ , ψ ) |
= |
|
1 |
|
cot |
|
σ + ψ |
− |
cot |
σ − ψ |
|
. |
|
(7.166) |
||||||
t |
|
4 sin2 |
γ0 |
|
4 |
|
|
|
|
4 |
|
|
|
|
|
|
|
For the directions of the diffraction cone (ϑ = π − γ0), functions (7.163) and (7.164) can be represented in the form
|
|
|
|
|
Fh(1)(π − γ0, ϕ) = g(ϕ, ϕ0, α) − ghp(ϕ, ϕ0) |
|
|
(7.167) |
|||||||||||||||||||||||||||
and |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Fs(1)(π − γ0, ϕ) = f (ϕ, ϕ0, α) − f hp(ϕ, ϕ0), |
|
|
(7.168) |
|||||||||||||||||||||||||||
where f and g are the Sommerfeld functions (2.62) and (2.64), and |
|
|
|
||||||||||||||||||||||||||||||||
|
|
|
|
1 |
cot |
|
π |
− |
ϕ |
− |
ϕ |
0 |
|
|
|
|
|
ϕ |
|
+ |
ϕ |
0 |
|
|
|
|
|
||||||||
ghp(ϕ, ϕ0) = − |
|
|
|
|
|
|
|
|
+ cot |
π − |
|
|
|
|
|
|
|
|
|||||||||||||||||
4 |
|
|
|
|
4 |
|
|
|
|
|
|
4 |
|
|
|
|
|
|
|
− |
|
|
|||||||||||||
|
− |
|
|
− |
|
0 |
|
4 |
|
|
|
|
|
|
|
4 |
|
|
|
+ |
|
|
|
|
|
|
+ |
4 |
2α |
||||||
|
|
|
|
ε(α |
|
|
ϕ |
) |
1 |
cot |
π |
+ ϕ − |
ϕ0 |
|
cot |
π |
|
ϕ + ϕ0 |
|
, (7.169) |
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||
|
1 |
|
cot |
π |
|
ϕ |
− |
ϕ |
0 |
|
|
|
|
|
π |
ϕ |
|
ϕ |
0 |
|
|
|
|
|
|
||||||||||
f hp(ϕ, ϕ0) = |
|
|
|
|
|
− |
|
|
− cot |
|
− |
+ |
|
|
|
|
|
|
|||||||||||||||||
4 |
|
|
|
|
4 |
|
|
|
|
|
4 |
|
|
+ |
|
− |
|
|
|||||||||||||||||
|
− |
|
|
− |
|
0 |
|
4 |
|
|
|
|
|
|
+ 4 − |
|
− |
|
|
|
|
|
|
4 |
2α |
||||||||||
|
|
|
|
ε(α |
|
|
ϕ |
) |
1 |
cot |
π |
ϕ |
ϕ0 |
|
cot |
π |
|
ϕ + ϕ0 |
|
(7.170) |
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
are the functions associated with the field scattered by the tangential half-planes. Notice also that for analytic analysis and numeric calculation, the cotangent forms
of functions f and g are more convenient than the Sommerfeld expressions (2.62) and
(2.64). These forms are determined as |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
1 |
cot |
π − |
ϕ |
|
|
|
ϕ |
0 |
|
|
|
|
|
π |
− |
ϕ |
|
|
|
|
ϕ |
0 |
|
||||||||||||||
g(ϕ, ϕ0, α) = − |
|
|
− |
|
|
+ cot |
|
|
+ |
|
|
|
||||||||||||||||||||||||||
2n |
|
2n |
|
|
|
|
|
|
2n |
|
|
|
|
|||||||||||||||||||||||||
|
|
|
|
|
|
π + |
ϕ |
|
ϕ |
0 |
|
|
|
|
|
|
π |
+ |
|
ϕ |
|
|
ϕ |
0 |
|
|
|
|
|
|
||||||||
+ cot |
+ |
|
|
+ cot |
|
|
− |
|
|
|
|
|
(7.171) |
|||||||||||||||||||||||||
|
|
|
2n |
|
|
|
|
|
|
|
2n |
|
|
|
|
|
|
|||||||||||||||||||||
and |
|
|
|
cot |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
1 |
|
π |
− |
ϕ |
|
|
|
ϕ |
0 |
|
|
|
|
|
π |
− |
ϕ |
|
|
|
ϕ |
0 |
|
|
|||||||||||||
f (ϕ, ϕ0, α) = |
|
|
|
|
|
− |
|
|
− cot |
|
|
+ |
|
|
|
|
|
|||||||||||||||||||||
2n |
|
|
|
|
2n |
|
|
|
|
|
|
2n |
|
|
|
|
|
|
||||||||||||||||||||
|
|
|
|
|
|
|
π |
+ |
ϕ |
|
|
ϕ |
0 |
|
|
|
|
|
|
π + ϕ − ϕ0 |
, |
|
||||||||||||||||
|
+ cot |
|
+ |
|
|
− cot |
(7.172) |
|||||||||||||||||||||||||||||||
|
|
|
2n |
|
|
|
|
with n = α/π .
TEAM LinG