
Ufimtsev P. Fundamentals of the physical theory of diffraction (Wiley 2007)(348s) PEo
.pdf
6.5 Axially Symmetric Bistatic Scattering 163
The next idea is to extract (in the explicit form!) the Fresnel integral from Equation
(6.203). It is accomplished with a simple procedure: |
|
|
|
|
|
||||||||||||||||||
|
|
I = eik (ξst ) G(0) |
t(l) |
eikt2 dt + |
t(l) |
eikt2 [G(t) − G(0)]dt |
(6.206) |
||||||||||||||||
|
|
|
|
|
|
|
|
|
|
−∞ |
|
|
|
|
−∞ |
|
|
|
|
|
|
|
|
or |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
√ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
1 |
|
kt(l) |
|
|
G |
t(l)] − G(0) |
|
|
|
1 |
|
||||||||||
I |
|
eik (ξst )G(0) |
eix2 dx |
|
eik (l) |
|
O |
. (6.207) |
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
||||||||||||||
|
= √ |
k |
|
√ |
|
−∞ |
|
|
+ |
[ |
i2kt(l) |
+ |
|
k2 |
|
||||||||
Under the condition |
|
|
1, when the observation point is far from the geomet- |
||||||||||||||||||||
kt(l) |
|||||||||||||||||||||||
|
rical optics boundary ϑ = 2ω, this expression is reduced asymptotically to the first two terms in Equation (6.185).
When the observation point approaches the boundary (ϑ = 2ω + 0 and t = +0), one should utilize Equations (6.201) and (6.202) and the additional approximations
1 |
|
1 |
|
|
1 |
|
(ξst ) |
|
|
|
|
|
|
||||||||||||||
|
= |
|
|
|
|
|
|
+1 − |
|
|
|
|
|
|
(ξ − ξst ) + O)(ξ − ξst )2*, , |
(6.208) |
|||||||||||
|
(ξ ) |
|
(ξ − ξst ) (ξst ) |
2 |
(ξst ) |
||||||||||||||||||||||
|
2t(ξ ) |
|
2 |
|
|
|
1 (ξst ) |
|
|
|
|
|
|
||||||||||||||
|
= |
|
+1 − |
|
|
|
|
|
|
(ξ − ξst ) + O[(ξ − ξst )2], , |
|
(6.209) |
|||||||||||||||
|
(ξ ) |
(ξst ) |
3 |
(ξst ) |
|
||||||||||||||||||||||
|
F(ξ ) = F(ξst ) + F (ξst )(ξ − ξst ) + · · · , |
|
|
|
|
|
(6.210) |
||||||||||||||||||||
and |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
(ξst ) |
|
|
||||||
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
||||||||||
|
G(t) − G(0) = (ξ − ξst ) |
|
F (ξst ) − |
|
|
F(ξst ) |
|
. |
(6.211) |
||||||||||||||||||
|
(ξst ) |
3 |
(ξst ) |
These relationships lead to the following value of the canonical integral at the boundary ϑ = 2ω + 0:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I = |
π |
|
F(l)eik (l)+iπ/4 |
|
|
|
|
|
|
|
|||||||||||
|
|
|
|
|
|
|
|
||||||||||||||
2 k (l) |
|
|
|
|
|
. |
|
||||||||||||||
|
1 |
|
|
1 |
|
|
|
|
(l) |
|
|
|
1 |
|
|||||||
+ |
|
F |
(l) − |
|
|
|
F(l) |
|
eik (l) + O |
|
(6.212) |
||||||||||
ik (l) |
3 |
(l) |
k2 |
||||||||||||||||||
This technique is applied further to the calculation of the PO field: |
|
||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
ik |
eikR |
|
|
|
|
||||||
|
|
|
us(0) = u0 |
√ |
|
|
eiπ/4Is |
|
|
|
|
|
|
(6.213) |
|||||||
|
|
|
|
R |
|
|
|
||||||||||||||
|
|
|
2π k sin ϑ |
|
|
|
|||||||||||||||
and |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uh(0) |
|
|
|
|
|
|
|
ik |
eikR |
|
|
|
|
||||||
|
|
= −u0 |
√ |
|
eiπ/4Ih |
|
, |
|
|
(6.214) |
|||||||||||
|
|
R |
|
|
|||||||||||||||||
|
|
2π k sin ϑ |
|
|
TEAM LinG

164 Chapter 6 Axially Symmetric Scattering of Acoustic Waves at Bodies of Revolution
where Is,h are defined by Equation (6.203) with |
|
|||||
Fs(ξ ) = ' |
|
|
Fh(ξ ) = ' |
|
[sin ϑ − ρ (ξ ) cos ϑ ] |
|
ρ(ξ )ρ (ξ ), |
ρ(ξ ) |
(6.215) |
||||
and |
|
|
|
|
||
|
|
(ξ ) = ξ(1 − cos ϑ ) − ρ(ξ ) sin ϑ . |
(6.216) |
We omit all intermediate routine manipulations and obtain the final approximations (neglecting the terms of order k−2):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
' |
|
|
|
|
|
|
|
|
|
|
|
|
−∞ |
|
|
|
|
|
|||||||||
|
eikR |
ei3π/4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
√k t(l) |
2 |
|
|
|
|
||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||
us(0) = u0 |
|
|
|
|
|
|
|
2√ |
|
|
|
|
|
R1(zst )Rst (zst )eik (zst ) |
|
|
|
|
|
|
eix dx |
|
|
|
|||||||||||||||||
|
R |
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||
|
|
π |
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||
+ |
|
|
|
|
|
|
a |
|
|
|
|
|
|
√ |
|
|
|
|
|
|
|
eik (l)+iπ/4 |
|
|
|||||||||||||||||
|
√ |
|
|
|
|
|
|
|
(0)(1) − |
R1(zst )R2(zst ) |
|
||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
f |
|
|
|
4√ |
|
|
t(l) |
|
|
|
|
(6.217) |
||||||||||||||||||||||
2π ka sin ϑ |
|
|
|
π k |
|
|
|||||||||||||||||||||||||||||||||||
and |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
− |
|
|
|
|
|
|
' |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
−∞ |
|
|
|
|
|
||||||||||
|
|
eikR |
ei3π/4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
√kt(l) |
2 |
|
|
|
||||||||||||||||||||
uh(0) = u0 |
R |
2√ |
|
|
|
|
|
R1(zst )Rst (zst )eik (zst ) |
|
|
|
|
|
|
eix dx |
|
|
|
|||||||||||||||||||||||
π |
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||
+ |
|
|
|
|
|
|
a |
|
|
|
|
|
√ |
|
|
|
|
eik (l)+iπ/4 |
, |
|
|||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
R1 |
(zst )R2(zst ) |
|
||||||||||||||||||||||||||||
√ |
|
g(0)(1) + |
|
4√ |
|
t(l) |
|
(6.218) |
|||||||||||||||||||||||||||||||||
2π ka sin ϑ |
π k |
|
|||||||||||||||||||||||||||||||||||||||
|
√ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(0) |
|
|
|
|
|
|
(0) |
|
|
|
|
|
||||||||||||
where t(l) = |
(l) − (zst ); functions f |
(1) and g |
(1) are defined in Equa- |
||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
tions (6.190) and (6.191); and R1,2 are the principal radii of curvature of the scattering |
||||||||||||||||||||||
surface, which are defined in Equation (6.121). |
|
|
|
|
|
|
|
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
√ |
|
|
1), Equations |
(6.217) and (6.218) |
|||||||
Far from the |
GO boundary ( |
kt(l) |
||||||||||||||||||||
transform into |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
eikR |
|
− |
|
1 |
|
|
|
|
|
|
|
|
|
|
a |
f (0)(1)eik (l)+iπ/4 |
|||||
us(0) = u0 |
'R1(zst )Rst (zst )eik (zst )+ |
√ |
||||||||||||||||||||
|
R |
|
2 |
|
|
|
||||||||||||||||
|
2π ka sin ϑ |
|
||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(6.219) |
|
and |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
eikR |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
a |
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
uh(0) = u0 |
|
|
|
|
'R1(zst )Rst (zst )eik (zst ) + |
√ |
|
g(0)(1)eik (l)+iπ/4 . |
||||||||||||||
|
R |
2 |
||||||||||||||||||||
|
2π ka sin ϑ |
|||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(6.220) |
These expressions totally agree with Equations (6.186) to (6.189) (keeping in mind that the edge point 2 is not visible in the region 2ω ≤ ϑ < π − ω). The first terms in Equations (6.219) and (6.220) are the ordinary reflected rays and the second terms are the edge-diffracted rays.
TEAM LinG

6.5 Axially Symmetric Bistatic Scattering 165
Exactly on the geometrical optics boundary (ϑ = 2ω + 0), Equations (6.217) and (6.218) are reduced to
|
|
|
|
eikR |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
us(0) = u0 |
|
|
|
|
+− |
|
|
'R1(l)R2(l) |
|
|
|
|
|
|
|
|
|
||||||||||||
|
R |
4 |
|
|
|
|
|
|
|
|
|
||||||||||||||||||
|
|
|
|
|
|
|
|
|
eiπ/4 |
1 |
|
|
(l) |
eik (l), |
|
||||||||||||||
|
+ |
√ |
|
|
|
|
|
|
(l) |
Fs(l) − |
|
|
|
Fs(l) |
|
|
(6.221) |
||||||||||||
|
3 |
(l) |
|||||||||||||||||||||||||||
|
2π k sin ϑ |
||||||||||||||||||||||||||||
and |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
eikR |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
uh(0) |
= u0 |
|
|
|
+ |
|
'R1(l)R2(l) |
|
|
|
|
|
|
|
|
|
|||||||||||||
R |
4 |
|
|
|
|
|
|
|
|
|
|||||||||||||||||||
|
|
|
|
|
|
|
|
eiπ/4 |
1 |
|
|
(l) |
eik (l), . |
|
|||||||||||||||
|
− |
√ |
|
(l) |
Fh(l) − |
|
Fh(l) |
|
|
(6.222) |
|||||||||||||||||||
|
3 |
(l) |
|
||||||||||||||||||||||||||
|
2π k sin ϑ |
Note that all the derivatives in these expressions are taken with respect to the variable ξ in the integral (6.184) and the subscripts s and h indicate the type (soft or hard) of the scattering object.
The first-order PTD approximation for the scattered field in this region can be found by the summation of the PO field (6.221), (6.222) with the field us,h(1) generated by
the nonuniform scattering sources js,h(1). For the field us,h(1), one can use Equations (6.49) and (6.50), which are not singular at the boundary of reflected rays ϑ = 2ω. Taking
into account the different locations of the coordinates’ origin used in Section 6.1 and here, the field us,h(1) can be written as
u(1) |
= |
u |
|
a |
f (1)(1) |
J |
|
(ka sin ϑ ) |
− |
i J |
|
(ka sin ϑ ) |
eikl(1−cos ϑ ) |
eikR |
|
(6.223) |
|||
0 2 |
|
|
R |
|
|
||||||||||||||
s |
|
[ |
|
0 |
|
|
1 |
] |
|
|
|
|
|
||||||
and |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uh(1) |
|
|
a |
|
|
|
|
|
|
|
|
|
eikR |
|
|
|
|||
= u0 |
|
g(1)(1)[J0(ka sin ϑ ) − i J1(ka sin ϑ )]eikl(1−cos ϑ ) |
|
|
, |
(6.224) |
|||||||||||||
2 |
|
R |
where functions f (1) and g(1) are defined in Section 6.1.2. Here we note again that the edge point 2 is not visible in the region 2ω ≤ ϑ < π − ω if < 2ω.
6.5.6 Approximation for the PO Field in the Shadow Region for Reflected Rays
The ordinary rays reflected from the scattering surface do not exist in the shadow region 0 ≤ ϑ < 2ω (Fig. 6.21). This circumstance can be used to obtain a helpful approximation for the PO fields (6.174), (6.175), which otherwise are difficult to calculate. Indeed according to Equation (1.70), the PO field consists of two parts: the reflected field and the so-called shadow radiation. The reflected field (defined by
TEAM LinG

TEAM LinG

Chapter 7
Elementary Acoustic and
Electromagnetic Edge Waves
This chapter is based on the papers by Butorin and Ufimtsev (1986), Butorin et al. (1988), and Ufimtsev (1989, 1991, 2006).
The relationships
dus = dEt if uinc(ζ ) = Etinc(ζ ); |
duh = dHt if uinc(ζ ) = Htinc(ζ ) |
exist between acoustic and electromagnetic EEWs propagating in the directions, that belong to the diffraction cone. Here, ˆt is the tangent to the scattering edge at the diffraction point ζ .
In the previous sections, it was demonstrated that the edge-diffracted waves provide a significant contribution to the scattered field. These waves represent by themselves the linear superposition of elementary edge waves (EEWs) generated in a certain vicinity of infinitesimal elements of the scattering edge; that is,
u = du(ζ ).
L
Here, L denotes the edge of the scattering object and ζ is the curvilinear coordinate measured along the edge and associated with its length (dζ = dl). It is supposed that the curvature radius of the edge L is large in terms of the wavelength and it can slowly change along the edge. The angle between the faces of the edge also can slowly change along the edge. The integrand du(ζ ) stands for the field of the EEW.
Our goal is to derive the high-frequency asymptotics for EEWs. Having obtained them, one can calculate the edge waves arising due to diffraction at the large class of objects with arbitrary smoothly curved edges. To achieve this goal, we utilize the asymptotic localization principle. According to this principle, the nonuniform/fringe
Fundamentals of the Physical Theory of Diffraction. By Pyotr Ya. Ufimtsev
Copyright © 2007 John Wiley & Sons, Inc.
169
TEAM LinG


7.2 Integrals for j |
(1) |
on Elementary Strips 171 |
|
s,h |
|
Figure 7.2 Polygonal facet of a scattering object. Only diffracted rays (dotted lines) coming from the upper edge are shown here and discussed in the main text.
are distributed over the whole elementary strip up to its infinite end. By the integration of j(1) over such a semi-infinite strip, one can find the first-order asymptotics for the EEW. However, sometimes it is reasonable to truncate that part of the elementary strip that is outside the real scattering facet (Michaeli, 1987; Breinbjerg, 1992; Johansen, 1996). A similar truncation procedure was considered in Section 5.1.4. From the physical point of view, the truncation results in the additional edge wave (arising at the truncation points), which can be interpreted as a part of the second-order diffraction.
In conclusion we notice a special case when the orientation of elementary strips can be arbitrary. Such a situation is possible for truncated strips on polygonal facets illuminated by a plane wave (Fig. 7.2).
Sections A and C of the polygonal facet are free from diffracted rays, and section B is continuously filled in by such rays. Two parallel thin lines show the elementary strip. All other elementary strips are parallel to this one and have different lengths because they occupy only section B. The field scattered from the facet (i.e., the field radiated by the nonuniform sources distributed in the region B) is determined by the integral over section B. It is clear that the result of integration does not depend on the shape of subsections of the region B, and therefore it does not depend on the orientation of the elementary strips.
7.2INTEGRALS FOR js,h(1) ON ELEMENTARY STRIPS
First we choose the elementary strips according to the rule formulated in Section 7.1. They are oriented along the edge-diffracted rays and shown in Figure 7.3. The incident plane wave is given by
uinc = u0 eikφi |
(7.1) |
TEAM LinG