Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Ufimtsev P. Fundamentals of the physical theory of diffraction (Wiley 2007)(348s) PEo

.pdf
Скачиваний:
73
Добавлен:
15.08.2013
Размер:
2.94 Mб
Скачать

152 Chapter 6 Axially Symmetric Scattering of Acoustic Waves at Bodies of Revolution

but for the given ω and a, the segment radius b and the length l are determined as

b

 

a

l

 

a

1 − sin ω

.

(6.163)

= cos ω

=

 

 

 

 

cos ω

 

The last relationships are helpful for the investigation of the continuous transformation of the spherical segment into the flat disk when ω π/2, l → 0, and a = const.

According to Equations (6.138), (6.161), and (6.163), the field us,h(0) is determined by

 

(0)

(0)

1

(b a tan ω e

i2kl

 

eikR

 

 

us

 

= −uh

 

= −u0

 

 

 

)

 

 

 

 

(6.164)

 

 

 

2

 

 

R

or by

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(0)

 

(0)

 

 

 

a

− sin ωe

i2kl

 

eikR

 

us

 

= −uh

= −u0

 

(1

 

 

)

 

.

(6.165)

 

2 cos ω

 

 

R

Comparison with the electromagnetic PO field scattered by a perfectly conducting spherical segment (Equation (2.6.4) in Ufimtsev (2003)) reveals the following relationships:

Ex(0) = us(0),

if Ex(0) = uinc

 

and

if Hy(0) = uinc.

 

Hy(0) = uh(0),

(6.166)

 

 

 

This result is in a complete agreement with the general relationships (1.100) and (1.101).

u(1)

In view of Equations (6.140), (6.141), (6.161), and (6.163) the field us,h

= us,h(0) +

is described by

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s,h

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

 

 

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ei2kl

 

 

 

 

 

 

 

 

 

1

 

 

2 sin

 

 

 

 

 

1

 

 

 

 

 

 

 

1

 

 

 

 

 

eikR

 

us

 

 

 

u0

 

a

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π

 

 

 

 

 

 

π

 

 

 

 

2ω

 

 

 

 

= −

 

2

 

 

 

 

 

n

 

cos

 

 

 

− 1

cos

 

− cos

 

 

 

 

 

 

R

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

n

 

(6.167)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

 

 

2 sin

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ei2kl

eikR

 

 

 

 

 

1

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

=

 

 

+

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

uh

u0

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

,

(6.168)

 

 

2

 

 

 

 

 

 

n

 

 

 

cos n

− 1

+ cos n

− cos

n

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TEAM LinG

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.4 Backscattered Focal Fields

153

or by

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

ei2kl

 

 

 

 

 

 

 

a

1

 

2 sin

 

 

1

 

 

1

 

 

e

ikR

us

 

u0

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π

 

 

π

ω

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(6.169)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= −

2

 

n

 

 

 

 

− 1

cos n − cos

2n

 

cos ω

 

cos n

 

 

R

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

ei2kl

 

 

 

 

 

 

a

1

 

2 sin

 

 

1

 

 

1

 

 

eikR

 

 

 

 

n

 

 

 

 

 

uh

 

u0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

,

 

 

 

 

 

 

 

 

π

 

 

 

 

π

2ω

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(6.170)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

2

 

+

 

n

 

 

 

 

− 1

+ cos n − cos

n

 

 

cos ω

 

 

cos n

 

 

R

with n = 1 + + )/π , where 0 ≤ ω π/2 and 0 ≤ ≤ π ω.

In the limiting case when the spherical segment continuously transforms into the flat disk (ω π/2 and l → 0), Equations (6.164), (6.165), (6.166) and (6.167), (6.168) are exactly reduced to Equations (6.150) and (6.151) and (6.152), respectively.

Numerical Analysis of Backscattering

In this section, we calculate the normalized scattering cross-section (6.112), taking into account Equations (6.110) and (6.111). According to the previous section, the following expressions for the ordinary scattering cross-section are valid. The PO approximation is given by

 

 

 

 

 

 

 

σs(0) =

σh(0) = π a2

 

 

1

 

 

 

 

 

 

 

 

cos ω

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and the first-order PTD by

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

2 sin

 

 

 

 

1

 

 

 

 

 

 

σs

 

π a2

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cos ω

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cos

 

 

 

1

 

 

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 sin

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

σh

 

π a2

 

 

 

 

 

 

 

n

 

 

n

 

 

 

 

 

=

 

 

 

 

 

+

 

n

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cos ω

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cos

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

− tan ω · ei2kl

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

ei2kl 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π

 

 

 

2ω

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cos

 

 

 

cos

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

n

 

 

 

 

 

 

 

 

 

1

 

 

 

ei2kl

2

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π

 

 

2ω

 

 

 

 

 

 

 

 

 

 

 

 

cos

 

 

 

cos

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

n

 

 

 

 

(6.171)

(6.172)

(6.173)

with n = 1 + + )/π .

Two types of calculation are presented here.

The first is the continuous transformation of the spherical segment into the flat disk in the limiting case ω π/2. It is assumed that all transition surfaces are

TEAM LinG

154 Chapter 6 Axially Symmetric Scattering of Acoustic Waves at Bodies of Revolution

Figure 6.18 Transformation of the spherical segment into a flat disk. According to Equation (6.166), the PO curve also represents the scattering of electromagnetic waves from a perfectly conducting spherical segment.

spherical with the curvature radius b = a/ cos ω. The initial object is given by the parameters ka = 3π , kl0 2.5π , ω0 = 10, and = 90. In terms of the wavelength, the base radius and the length of the spherical element are equal to a = 1.5λ and l0 1.26λ. The numerical results for the normalized scattering cross-section are plotted in Figure 6.18. It clearly shows the influence of the

Figure 6.19 Influence of the shadowed part of the spherical segment on backscattering. According to Equation (6.166), the PO curve also represents the scattering of electromagnetic waves from a perfectly conducting spherical segment.

TEAM LinG

6.5 Axially Symmetric Bistatic Scattering 155

nonuniform component of the scattering sources ( js,h(1)) concentrated in the vicinity of the edge.

In the next calculation we investigate the influence of the shadowed part of the

spherical segment on backscattering. The critical parameter of this part is the angle shown in Figure 6.17. It changes from zero to π ω. In the limiting case, when = π ω, the scattering object transforms into the perfectly

reflecting infinitely thin screen. The illuminated spherical part of the segment is determined by the parameters ω = 10, ka = 3π , kl 2.5π . In terms of the wavelength, a = 1.5λ and l 1.26λ. The results are plotted in Figure 6.19.

The PO approximation does not depend on the shape of the shadowed part and it is represented in Figure 6.19 by the horizontal straight line. However, according to PTD, the backscattering increases up to 10 dB for the acoustically soft object and up to 13.5 dB for the acoustically hard object.

6.5BODIES OF REVOLUTION WITH NONZERO GAUSSIAN CURVATURE: AXIALLY SYMMETRIC BISTATIC SCATTERING

The geometry of the problem is illustrated in Figure 6.20. The incident plane wave (6.1) propagates in the positive direction of the z-axis, which is the symmetry axis of a scattering body of revolution. The generatrix of the illuminated side of this body is given by the equation ρ = ρ(z), with 0 ≤ z l, under the condition d2ρ/dz2 =0. This condition ensures that the Gaussian curvature of this surface is not zero. The shadowed side is an arbitrary smooth surface with 0 ≤ ≤ π ω. In the limiting case = π ω, the scattering object is an infinitely thin perfectly reflecting screen with ρ = ρ(z) and 0 ≤ z l. The tangent to the generatrix forms the angle θ with the z-axis. At the edge points z = l − 0, this angle equals θ (l) = ω = tan−1[dρ(l)/dz]. The principal radii of curvature (R1, R2) are defined in Equations (6.121) and (6.122), and the Gaussian curvature is given by Equation (6.123). The unit normal nˆ to the illuminated surface is defined in Equation (6.128). Due to the axial symmetry of the

Figure 6.20 Generatrix of a body of revolution.

TEAM LinG

156 Chapter 6 Axially Symmetric Scattering of Acoustic Waves at Bodies of Revolution

problem, it is sufficient to calculate the scattered field only in the meridian plane

ϕ = π/2.

6.5.1Ray Asymptotics for the PO Field

These asymptotics can be derived from the general integral expressions (6.132), (6.133) under the condition sin ϑ 1. First we consider the observation points in the region π ω < ϑ π , where the entire illuminated surface of the scattering object is visible (Fig. 6.21).

The integrals in Equations (6.132), (6.133) over the variable ψ are calculated by the stationary phase technique (Copson, 1965; Murray, 1984). The details of this method were briefly explained in Section 6.1.2. The phase function in these integrals has two stationary points: ψ1 = π/2 and ψ2 = 3π/2. Asymptotic evaluation of these integrals leads to the expressions

 

 

ik

 

 

eikR

eiπ/4

l

 

 

 

 

us(0) = u0

 

 

0 eik 1(z)

'ρ(z)ρ

(z)dz

 

 

R

2π k sin ϑ

 

 

 

l

 

 

 

 

 

(z)dz

 

 

 

 

+eiπ/4

0 eik 2(z)'

 

 

 

 

 

(6.174)

ρ(z)ρ

 

 

 

Figure 6.21 Cross-section of a body of revolution by the plane yoz.

TEAM LinG

6.5 Axially Symmetric Bistatic Scattering 157

and

 

 

 

ik

 

eikR

l

 

 

 

 

 

 

 

 

 

 

 

uh(0) = −u0

 

 

 

 

eiπ/4

0 eik 1(z)'ρ(z)[sin ϑ ρ

(z) cos ϑ ]dz

R

2π k sin ϑ

 

 

 

l

 

 

 

 

[sin ϑ + ρ (z) cos ϑ ]dz

 

− eiπ/4

0 eik 2(z)'

 

(6.175)

ρ(z)

where

 

 

 

 

 

 

 

 

 

 

 

 

 

1(z) = z(1 − cos ϑ ) ρ(z) sin ϑ

(6.176)

and

 

 

 

 

 

 

 

 

 

 

 

 

 

2(z) = z(1 − cos ϑ ) + ρ(z) sin ϑ .

(6.177)

Here the integrals with the factor exp[ 1(z)] represent the field generated by the vicinity of the stationary line ψ = π/2, 0 < z l, and the integrals with exp[ 2(z)] describe the field generated by the vicinity of the stationary line ψ = 3π/2, 0 < z l (Fig. 6.21).

Now we check the functions 1(z) and 2(z) for the presence of stationary points zst . It follows from the equation

1

=

1

cos ϑ

ρ (z

st

) sin ϑ

=

0

(6.178)

(z)

 

 

 

 

 

that

 

 

 

 

 

 

 

 

 

 

 

ρ (zst ) = dρ/dz = tan θ (zst ) = tan(ϑ/2)

(6.179)

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

θ (zst ) = ϑ/2.

 

 

 

 

(6.180)

This equation determines the reflection point zst on the scattering surface shown in Figure 6.20. At this point, the tangent to the generatrix ρ(z) forms the angle θ = ϑ/2 with the z-axis, which agrees with the reflection law.

We then check the function 2(z) for the stationary point. It follows from the equation

2

=

1

cos ϑ

+

ρ

st

) sin ϑ

=

0

(6.181)

(z)

 

 

 

(z

 

that

 

 

 

 

 

 

 

 

 

 

 

ρ (zst ) = dρ/dz = tan θ (zst ) = − tan(ϑ/2)

(6.182)

and

 

 

 

 

 

 

 

 

 

 

 

θ (zst ) = −ϑ/2,

with −π < ϑ < 0.

(6.183)

TEAM LinG

158 Chapter 6 Axially Symmetric Scattering of Acoustic Waves at Bodies of Revolution

This stationary point relates to the reflected ray in the meridian plane ϕ = 3π/2. For the same value zst in Equations (6.180) and (6.183), this ray is exactly symmetrical to the reflected ray shown in Figure 6.20. As we consider the scattered field only in the meridian plane ϕ = π/2, the function 2(z) does not have any stationary points for the scattering directions in this plane.

By introducing into Equations (6.174) and (6.175) a new integration variable ξ = z for the integrals with function 1(z), and ξ = −z for the integrals with function2(z), one can represent their sum as

l

 

I(P) = F(ξ , P)eik (ξ ,P)dξ ,

(6.184)

l

where symbol P denotes the location of the observation point. For a high frequency of the field (when k 1), the factor exp[ , P)], being a function of the integration variable ξ , undergoes fast oscillations. Because of this, most differential contributions F(ξ , P)eik (ξ ,P)dξ to the integral I(P) asymptotically cancel each other. Only those that are in the vicinity of the stationary point ξst and in the vicinity of the end points ξ = −l and ξ = l provide substantial contributions to I(P). The contribution of the stationary point is calculated by the stationary phase technique, and the contributions by the end points are found by integrating by parts (Copson, 1965; Murray, 1984). The resulting asymptotic approximation for I(P) is given by

I(P)

 

 

 

2π

 

 

 

 

 

 

 

F(ξst , P)eik (ξst ,P)+iπ/4

 

 

k (ξst , P)

 

 

1

 

 

F(l, P)

F( l, P)

.

 

+

 

 

 

eik (l,P)

eik (l,P)

(6.185)

ik

(l, P)

( l, P)

 

 

 

 

 

 

 

 

 

 

The first term in Equation (6.185) represents the contribution from the stationary point, and the rest of the terms provide the contributions from the end points. Only the dominant asymptotic terms for each contribution are retained here.

The outlined procedure was used to represent the scattered field us,h(0) in the form of three contributions:

us,h(0) = us,h(0)(zst ) + us,h(0)(1) + us,h(0)(2),

(6.186)

where

 

1

 

 

 

eikR

 

 

us(0)(zst ) = −uh(0)

'R1(zst )R2(zst )eik 1(zst )

 

 

(zst ) = −u0

 

 

,

(6.187)

2

R

TEAM LinG

6.5 Axially Symmetric Bistatic Scattering 159

and

us(0)(1) + us(0)

(2) =

u0a

)f (0)(1)eika sin ϑ +iπ/4

 

 

 

2π ka sin ϑ

 

 

 

 

 

 

 

*

 

ikR

 

 

 

 

+ f (0)(2)eika sin ϑ iπ/4

 

e

eikl(1−cos ϑ ),

(6.188)

 

 

R

(0)

(0)

 

 

u0a

)g(0)(1)eika sin ϑ +iπ/4

 

uh

(1) + uh

(2) =

 

 

2π ka sin ϑ

 

 

 

 

 

 

 

*

 

ikR

 

 

 

 

+ g(0)(2)eika sin ϑ iπ/4

e

 

eikl(1−cos ϑ ).

(6.189)

 

 

R

The functions us,h(0)(zst ) describe the ordinary ray reflected at the stationary point zst determined by Equations (6.179) and (6.180). The quantities R1 and R2 are the principal radii of curvature of the scattering surface. They are defined by Equations (6.121) and (6.122).

Expressions (6.188) and (6.189) determine the sum of two edge-diffracted rays diverging from the edge points 1 and 2 shown in Figure 6.21. The directivity patterns of these rays are defined by the functions

f (0)(1) =

and

g(0)(1) =

sin ω

,

cos ω − cosϑ )

sinϑ )

,

cos ω − cosϑ )

f (0)(2) =

g(0)(2) =

sin ω

(6.190)

cos ω − cos+ ϑ )

sin+ ϑ )

. (6.191)

cos ω − cos+ ϑ )

6.5.2 Bessel Interpolations for the PO Field in the Region π ω ϑ π

With the application of relationships (6.45) and (6.46), the above ray asymptotics can be written in the form

us(0) = u0

− 2 'R1(zst )R2(zst )eik 1(zst )

 

1

 

 

 

+ a { f (0)(1)[J0(ka sin ϑ ) iJ1(ka sin ϑ )]

2

eikR

+ f (0)(2)[J0(ka sin ϑ ) + iJ1(ka sin ϑ )]} eikl(1−cos ϑ ) (6.192)

R

TEAM LinG

160 Chapter 6

 

Axially Symmetric Scattering of Acoustic Waves at Bodies of Revolution

and

 

 

 

 

 

 

 

 

 

 

 

uh(0) = u0

 

'

 

eik 1(zst )

 

 

 

 

 

R1(zst )R2(zst )

 

 

 

 

2

 

 

 

 

 

a

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

{g(0)(1)[J0(ka sin ϑ ) iJ1(ka sin ϑ )]

 

 

 

 

2

eR

,

(6.193)

+ g(0)(2)[J0(ka sin ϑ ) + iJ1(ka sin ϑ )]} eikl(1−cos ϑ )

 

 

 

 

 

 

 

 

 

ikR

 

 

where J0 and J1 are the Bessel functions. These asymptotics are valid away from the focal line (ϑ = π ) under the condition ka sin ϑ 1. The focal field is described by the asymptotics (6.138), which can be rewritten as

 

1

 

 

 

a

 

eikR

 

 

us(0) = −uh(0) = u0

'R1(0)R2(0) +

 

 

 

 

tan ω ei2kl

 

,

(6.194)

2

2

R

where R1(0) = R2(0) = 1/z (0).

When ϑ π the above asymptotics (6.192) and (6.193) exactly transform into the focal asymptotics (6.194). Therefore, the expressions (6.192) and (6.193)

can be considered as the appropriate approximations valid in the entire region

π ω ϑ π .

6.5.3 Bessel Interpolations for the PTD Field in the Region π ω ϑ π

The PTD field consists of the sum of the PO field and the field us,h(1) generated

by the nonuniform components js,h(1) of the scattering sources. The components js,h(1) caused by the smooth bending of the scattering surface generate the far field of

order k−1 (Schensted, 1955), and those caused by the sharp edge create the field of order k−1/2 (as shown in Equations (6.21) and (6.22)). Therefore, in the first-order PTD approximation, one can retain only the dominant contributions generated by the edge-type sources js,h(1). The uniform asymptotics for these contributions in the region π ω ϑ π are given by the expressions (6.47) and (6.48), where one should include the additional factor exp[ikl(1 − cos ϑ )] due to the shift of the coordinates’ origin. By the summation of the modified Equations (6.47) and (6.48) with the PO asymptotics (6.192), (6.193), one obtains

 

1

 

 

 

 

 

 

 

 

 

 

 

usPTD = u0

 

 

R1(zst )R2(zst ) eik 1(zst )

 

2

 

 

a

'

 

 

 

+

 

{ f (1)[J0(ka sin ϑ ) iJ1(ka sin ϑ )]

 

2

 

+ f (2)[J0(ka sin ϑ ) + iJ1(ka sin ϑ )]} eikl(1−cos ϑ )

ikR

 

e

(6.195)

R

TEAM LinG

 

 

 

 

 

 

6.5 Axially Symmetric Bistatic Scattering 161

and

 

 

 

 

 

 

 

 

 

 

uhPTD = u0

 

 

'

 

eik 1(zst )

 

 

 

 

 

R1(zst )R2(zst )

 

 

 

 

2

 

 

 

 

 

a

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

{g(1)[J0(ka sin ϑ ) iJ1(ka sin ϑ )]

 

 

 

 

2

eR .

(6.196)

+ g(2)[J0(ka sin ϑ ) + iJ1(ka sin ϑ )]} eikl(1−cos ϑ )

 

 

 

 

 

 

 

 

ikR

 

 

The functions f (1, 2) and g(1, 2) are defined by Equations (6.25), (6.26), and (6.30), and (6.31), where one should omit the last terms, which are exactly cancelled by the terms f (0)(1, 2) and g(0)(1, 2) during the summation of modified Equations (6.47) and (6.48) with Equations (6.193) and (6.194).

6.5.4 Asymptotics for the PTD Field in the Region 2ω < ϑ π ω away from the GO Boundary ϑ = 2ω

In this observation region, the stationary edge point 2 (Fig. 6.21) is not visible (when< 2ω), and its first-order contribution to the scattered field equals zero. We also assume that the observation directions are far from the last GO ray (reflected at the point 1 and shown in Fig. 6.21), where functions f (1) and g(1) are singular. Under these conditions, one can use the obvious modifications of Equations (6.195) and (6.196) for the scattered field:

usPTD = u0

1

'R1(zst )R2(zst ) eik 1(zst )

2

+a f (1)[J0(ka sin ϑ ) iJ1(ka sin ϑ )] eikl(1−cos ϑ )

2

and

uhPTD = u0

 

2

'R1(zst )R2(zst ) eik 1(zst )

 

 

1

 

 

 

+a g(1)[J0(ka sin ϑ ) iJ1(ka sin ϑ )] eikl(1−cos ϑ )

2

eikR

(6.197)

R

eikR

.(6.198)

R

6.5.5 Uniform Approximations for the PO Field in the Ray Region 2ω ϑ π ω Including the GO Boundary ϑ = 2ω

The above ray asymptotics (6.197), (6.198) are not applicable in the vicinity of the geometrical optics boundary ϑ = 2ω, where the wave field does not have a ray structure. In this so-called transition region, the process of the transverse diffusion of the

TEAM LinG

Соседние файлы в предмете Оптика