Скачиваний:
28
Добавлен:
15.08.2013
Размер:
665.11 Кб
Скачать

19. Electrophilic additions to double bonds

1205

The results further revealed that the saturation rate constants (kc) are influenced principally by the nature of the O-9 substituent of the cinchona analogues studied, especially if aromatic substrates are used. The observed trends in binding constants (Keq) for OsO4 and the test ligands show that Keq can be regarded as an approximate measure of the steric hindrance in the vicinity of the ligand-binding site. The binding constants and the saturation rate constants kc are not correlated, which indicates that the observed rate variations are apparently not caused by variations in ground-state energy due to steric interactions. The rate data have been interpreted in terms of a relative stabilization of the transition state in the case of ‘fast’ ligands. It has been approximated that a transition-state stabilization may result from stacking of the olefin and ligand substituents; this is consistent with the fact that flat aromatic substrates give much higher rate constants than aliphatic ones. Further support for this hypothesis has been obtained from the solvent effect and Hammett studies, as well as from X-ray data, molecular modelling and NOE experiments on osmium complexes (Figure 3). Phthalazine ligand 351 gives exceptionally high rate

FIGURE 3. Structure of the bis-OsO4 complex of (DHQD)2PHAL based on molecular mechanics calculations and NOE experiments. Reprinted with permission from H. C. Kolb, P. G. Andersson and K. B. Sharpless, J. Am. Chem. Soc., 116, 1278 (1994). Copyright (1994) American Chemical Society

Q

O

N

N

O

Q

(351)

1206

Pavel Kocovskˇy´

constants with aromatic substrates. This effect can be attributed to a ‘binding pocket’ created by the phthalazine and methoxyquinoline moieties of the ligand, which enables a particularly good transition-state stabilization for aromatic olefins. The enantioselectivity trends have been found to parallel the rate trends480. However, the old question whether the osmylation proceeds via an initial [3 C 2] or [2 C 2] addition remains unsolved as the kinetic experiments cannot differentiate between these two pathways.

Strong evidence for the stereoelectronic control of diastereoselectivity in the catalytic osmylation has been provided by the study of the reactivity of sterically unbiased 3(p- X-phenyl)-3-phenylcyclopentenes 352 (X D NO2, Br, Cl, OMe, NMe2)484. Diastereoisomeric diols 353 and 354 are formed in the ratio varying from 30:70 (for X D NO2) to 64:36 (for X D NMe2), as determined by 1H and 13C NMR spectroscopy. In all cases, the addition occurs predominantly opposite the more electron-rich aromatic ring484 as predicted by Cieplak’s theory33. The observed ratios correspond to an overall energy difference of 1.1 kcal mol 1484 .

X

 

OH

 

 

OH

OS O4 (3 mmol%)

Ar

OH

Ar

OH

Me3 NO

Ph

+

Ph

 

Ph

(352)

(353)

(354)

The diastereoselectivity of dihydroxylation of allylic amides and carbamates 355 has been found to be dependent on the solvent, the nitrogen protecting group and the substitution pattern of the substrate485. In contrast to the ‘erythro357 selectivity observed with allylic alcohols, amides and carbamates exhibit ‘threo356 selectivity. Stoichiometric osmylations have been found to be more selective than their catalytic cousins. Control experiments have suggested that this is due to the presence of a second catalytic cycle involving osmium glycolate catalyst, which accumulates as the reaction proceeds to completion485.

BOC

NH

 

BOC NH

 

 

R

 

 

R

HO

OH

 

(355)

(356)

 

BOC

NH

 

+ R

 

 

 

HO

OH

(357)

19. Electrophilic additions to double bonds

1207

A stoichiometric procedure for the osmium-mediated, enantioselective aminohydroxylation of trans-alkenes RCHDCHR (R D Ph, Et, Pri) has been developed employing chiral complexes between tert-butylimidoosmium (But NDOsO3) and derivatives of cinchona alkaloids. The success of the reaction is dependent on a ligand acceleration effect; corresponding diols are the by-products. The e.e. varies between 40 and 90%486,487.

H. Other Transition Metals

Tungsten 4-diene cations in both s-trans and s-cis forms have been synthesized and the influence of the diene conformation on the regiochemistry of nucleophilic attack has been demonstrated488. Application of nucleophilic additions to Mo-complexed olefins in the construction of quaternary carbon centres has been summarized489.

Oxalyl chloride has been reported to react with R4NMnO4 to form a chlorine-containing manganese reagent (possibly 358), that stereospecifically trans-dichlorinates olefins490. Primary syn-addition of the reagent across the double bond to form 359 is assumed, followed by SN2 displacement of Mn by chloride 359 ! 360490. This reaction closely parallels a stereospecific dichlorination effected by means of MnO2 Me3SiCl for which a non-radical mechanism has also been proposed491.

 

Cl

 

 

Cl

MnLn

 

Cl

H

R2

+

MnLn+ NR4

 

 

 

 

 

R2

 

 

 

 

 

R1

Cl

 

 

R1

H

R1

Cl

 

 

 

 

H

R2

 

H

 

 

(358)

 

 

(359)

 

 

(360)

Under controlled conditions, the KMnO4/CuSO4 mixture oxidizes cholesterol 361 to furnish the ˇ-epoxide 362 rather than the ˛-epoxide, which is normally formed by peroxy acids492.

 

KMnO4 CuSO4

A2 O

A2 O

 

O

(361)

(362)

5-Hydroxyalkenes 363 have been found to react with Re2O7 to produce moderate yields of hydroxymethyl tetrahydrofurans 364 with overall syn-stereoselectivity493.

 

 

 

 

 

OH

 

 

Re2 O7

 

HO

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(363)

 

 

 

 

 

 

(364)

Ferric

complexes (Et

3

NH)FeIII(bpb)X

2

(X

D

Cl, OTf)

catalyse the epoxidation of

 

494

 

 

 

 

 

 

 

olefins by PhIO

 

. Analysis of the by-products led the authors to the formulation of a

1208 Pavel Kocovskˇy´

mechanism which involves electrophilic attack on the olefin by the iodine(III) centre in a metal iodosylbenzene complex. Additional evidence in support of this mechanism was gained from the reaction of PhI(OAc)2 with norbornene or norbornenecarboxylic acid in different solvents494.

Substitution of one carbonyl by Ph3P in (diene)Fe(CO)3 complexes results in a change of regiospecificity of electrophilic attack and thus provides an easier access to [(allyl)FeL4]X salts. Similar Ph3P substitution in [(dienyl)Fe(CO)3]X complexes decreased reactivity towards nucleophiles495.

The electrophilic Co(III) complex fCpŁ [(MeO)3P]CoCH2CH2- -HgC BAr4 [Ar D 3,5-(CF3)2C6H3] has been shown to be an efficient catalyst for the regiospecific hydrosilylation of 1-hexene; fCpŁ [(MeO)3P]CoCH(Bu)CH(SiEt3)- -HgC has been identified as the catalyst resting state by spectral methods496. The ω-alkenyl side-chain in the CoII(salen)-type derivatives reacts with O2 and MeOH to give products with new Co C bonds. The reaction is believed to be initiated by electrophilic attack of Co at the CDC bond497. Cobalt(II)(salen)2-catalysed aerobic hydration of styrene57 has been described in Section II.A.

Tailoring of the chiral ligand resulted in the high enantioselection of the nickel-catalysed hydrocyanation of ˇ-vinylnaphthalene473.

The first successful catalytic amination of an olefin by transition-metal-catalysed N H activation was reported for an Ir(I) catalyst and the substrates aniline and norbornene 365498. The reaction involves initial N H oxidative addition and olefin insertion 365 ! 366, followed by C H reductive elimination, yielding the amination product 367. Labelling studies indicated an overall syn-addition of N H across the exo-face of the norbornene double bond498. In a related study, the amination of nonactivated olefins was catalysed by lithium amides and rhodium complexes499. The results suggest different mechanisms, probably with ˇ-aminoethyl metal species as intermediates.

 

 

 

 

H

 

 

 

 

 

H

 

 

 

 

 

PEt3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

N

Ir

 

 

 

 

 

NHPh

 

 

PEt3

 

 

 

 

 

 

 

 

 

 

Ph

Cl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(365)

(366)

 

 

 

 

 

(367)

 

 

 

A

highly stereoselective

method of anti-Markovnikov

hydration500

relies

on

the intramolecular hydrosilylation of ˛-hydroxy enol

ethers

368

catalysed

by

platinum-vinylsiloxane. The origin of the stereoselectivity

has

been

attributed

to

steric

repulsion between the R

and

OMOM groups

in

the cyclic

transition

state

371. Stereoselectivities

attained with OMOM, OEt

and OTHP

groups (14:1

to >99:1) are much higher than those observed for the corresponding methyl derivatives (6.7:1), suggesting also an important contribution of electronic effects. A rhodium complex, (acac)(COD)Rh, exhibits similar activity but somewhat lower stereoselectivity500.

The relative rates of platinum-catalysed hydrosilylation of terminal olefins versus internal alkynes have been compared in competitive experiments. Thus, for example, (EtO)3SiH appears to prefer almost exclusively (97:3) to add to PhC CPh vs PhCHDCH2, while

19. Electrophilic additions to double bonds

1209

OMOM

OMOM

 

R

(Me2 SiH)2 NH

NH4 Cl (cat.)

HO

(368)

 

OMOM

R

 

 

30% H2 O2

 

 

 

15% KOH

HO

 

OH

Pt

 

 

 

 

 

Me

Me

Si

H

H

 

 

H

 

O

OMOM

H

R

(370)

R

OSiHMe2

[Pt]

OMOM

R

O SiMe2

(369)

H

H

OMOM

H O R

Pt

Si H Me Me

(371)

a 1:1 mixture of 2-decyne and 1-hexene gave a 78:22 mixture of the alkyne vs alkene product. The ratios with other model compounds fall into the range of 78:22 to 90:10, showing the higher reactivity of the triple bond. All the olefinic products have the (E) stereochemistry501.

I. Lanthanoids

A detailed kinetic study of the organolanthanoid-catalysed intramolecular hydroamination allowed for the formulation of a catalytic cycle502. The stereochemistry appears to be highly dependent on the size of the lanthanide ion, -ligation, temperature and added exogeneous ligands. Thus, for example, the cyclization of 372 can produce diastereoisomeric mixtures of 373 and 374 in the range of ratios from 1:1 to 50:1502,99. The hydrogen from the nitrogen atom migrates to the terminal carbon as revealed by labelling502. The reaction is zero-order in substrate over a wide concentration and conversion range. The

Hand Svalues suggest a highly organized transition state. With chiral substrates, high e.e. of the products was achieved; the negligible racemization at long reaction times indicates that the reaction is essentially irreversible502.

The use of organotyrium catalysts in reductive cyclization of 1,5- and 1,6-dienes has been reported; the yields are in the range of 53 99%. The catalytic species is generated in situ by reduction of Cp2Ł YMe503.

1210

Pavel Kocovskˇy´

 

 

 

 

H

Cp Ln

H

NH2

 

2

 

 

 

Cp Ln

N

 

N

 

 

 

 

 

2

 

 

 

 

(372)

 

 

 

 

 

H

H

 

 

 

N

N

 

(373)

(374)

IX. ACKNOWLEDGEMENT

I particularly acknowledge the support of my colleague, Dr Robert S. Atkinson, who read most of the manuscript, and whose help was instrumental in preparing the chapter on aziridination.

X.REFERENCES

1.G. H. Schmid and D. G. Garratt, Chemistry of Double-bonded Functional Groups: Supplement A (Ed. S. Patai), Wiley, London, 1977, p. 725.

2. G. H. Schmid, Chemistry of Double-bonded Functional Groups: Supplement A, Vol. 2 (Ed.

S. Patai), Wiley, Chichester, 1989, p. 679.

3.Y. Wang, Huaxue Tongbao, 51 (1989); Chem. Abstr., 111, 193770 (1989).

4.Ch. Kaneko, Y. Sugita and S. Nagashima, Kagaku (Kyoto), 47, 792 (1992); Chem. Abstr., 118, 21744 (1993).

5.W. Luef and R. Keese, Topics in Stereochemistry, 20, 231 (1991); Chem. Abstr., 114, 206185 (1991).

6.G. A. Kraus, Y.-S. Hon, P. J. Thomas, S. Laramaya, S. Liras and J. Hanson, Chem. Rev., 89, 159 (1989).

7.R. Caple, in Org. Synth. Mod. Trends, Proc. IUPAC Symp. 6th, 1986 (Ed. O. Chizov), 1987, p. 119; Chem. Abstr., 109, 128059 (1988).

8.J. Beger, J. Prakt. Chem., 333, 677 (1991).

9.M.-F. Ruasse, Acc. Chem. Res., 23, 87 (1990).

10.A. N. Mirskova, T. I. Drozdova, G. G. Levkovskaya and M. G. Voronkov, Usp. Khim., 58, 417 (1989); Chem. Abstr., 111, 6531 (1989).

11.B. Fuchs, Ind. Chem. Libr., 3, 23 (1991); Chem. Abstr., 116, 105240 (1992).

12.R. M. Moriarty, R. K. Vaid and G. F. Koser, Synlett, 365 (1990). For discussion on some of the mechanistic details, see elsewhere197.

13.S. Saito, Yuki Gosei Kagaku Kyokaishi, 50, 316 (1992); Chem. Abstr., 117, 47523 (1992).

14.G. Cardillo and M. Orena, Tetrahedron, 46, 3321 (1990).

15.S. Borciˇc,´ O. Kronja and K. Humski, Croat. Chem. Acta, 67, 171 (1994); Chem. Abstr., 121, 254950 (1994).

16.G. H. Schmid, Beijing Gongye Daxue Xuebao, 13, 113 (1987); Chem. Abstr., 108, 74460 (1988).

17.V. N. Drozd, M. L. Petrov, N. Ya. Kuz’mina and A. S. Vyazgin, Usp. Khim., 57, 94 (1988); Chem. Abstr., 109, 91958 (1988).

18.H. Mayr, Angew. Chem., Int. Ed. Engl., 29, 1371 (1990).

19.H. Mayr, NATO ASI Ser., Ser. C, 289, 21 (1989); Chem. Abstr., 113, 22691 (1991).

20.(a) L. E. Overman, Acc. Chem. Res., 25, 352 (1992).

(b) L. E. Overman, Aldrichim. Acta, 28, 107 (1995).

19. Electrophilic additions to double bonds

1211

21.T. Hosokawa and S. Murahashi, Yuki Gosei Kagaku Kyokaishi, 47, 636 (1989); Chem. Abstr., 111, 231476 (1989).

22.T. Hosokawa and S. Murahashi, Acc. Chem. Res., 23, 49 (1990).

23.K. Utimoto, Yuki Gosei Kagaku Kyokaishi, 45, 112 (1987); Chem. Abstr., 109, 189464 (1988).

24.J.-E. Backvall,¨ Pure Appl. Chem., 64, 429 (1992).

25.(a) T. Hayashi, A. Kubo and F. Ozawa, Pure Appl. Chem., 64, 421 (1992).

(b)A. de Meijere and F. E. Meyer, Angew. Chem., Int. Ed. Engl., 33, 2379 (1994).

(c)W. Cabri and I. Candiani, Acc. Chem. Res., 28, 2 (1995).

26.D. L. Reger, Acc. Chem. Res., 21, 229 (1988).

27.H. Waldmann, Nachr. Chem. Tech. Lab., 40, 702 (1992); Chem. Abstr., 118, 38168 (1993).

28.P. Kocovskˇy,´ Collect. Czech. Chem. Commun., 59, 1 (1994).

29.D. J. Nelson, P. J. Cooper and R. Soundrarajan, J. Am. Chem. Soc., 111, 1414 (1989).

30.G. Mehta and F. A. Khan, J. Chem. Soc., Chem. Commun., 18 (1991).

31.G. Mehta, G. Gunasekaran, S. R. Gadre, R. N. Shirsat, B. Ganguly and J. Chandrasekhar, J. Org. Chem., 59, 1953 (1994).

32.Y.-D. Wu, Y. Li, J. Na and K. N. Houk, J. Org. Chem., 58, 4625 (1993).

33.A. S. Cieplak, J. Am. Chem. Soc., 103, 4540 (1981).

34.A. C. Cieplak, B. D. Tait and C. R. Johnson, J. Am. Chem. Soc., 111, 8227 (1989).

35.A. R. Chamberlin, R. L. Mulholland, S. D. Kahn and W. J. Hehre, J. Am. Chem. Soc., 109, 672 (1987).

36.W. Adcock, J. Cotton and N. A. Trout, J. Org. Chem., 59, 1867 (1994).

37.T. Ohwada, I. Okamoto, N. Haga and K. Shudo, J. Org. Chem., 59, 3975 (1994).

38. M. J. Martinelli, B. C. Peterson, V. V. Khau, D. R. Hutchinson, M. R. Leanna, J. E. Audia,

J. J. Droste, Y.-D. Wu and K. N. Houk, J. Org. Chem., 59, 2204 (1994).

39.M. Fujita, M. Ishida, K. Manako, K. Sato and K. Ogura, Tetrahedron Lett., 34, 645 (1993).

40.P. Karafloglou and M. E. Sanchez, Int. J. Quantum Chem., 44, 337 (1992).

41.V. Lucchini, F. Marcuzzi and G. Modena, Stud. Org. Chem. (Amsterdam), 31 (1987); Chem. Abstr., 108, 186112 (1988).

42.K. B. Wiberg and S. Hao, J. Org. Chem., 56, 5108 (1991).

43.R. S. Ryabova, G. F. Osipova and M. I. Vinnik, Izv. Akad. Nauk, Ser. Khim., 1311 (1992); Chem. Abstr., 118, 21796 (1993).

44.M. Lajunen, Acta Chim. Scand., 45, 377 (1991).

45.M. Lajunen and M. Himottu, Acta Chem. Scand., Ser. A, A41, 252 (1987); Chem. Abstr., 110, 38355 (1989).

46.M. Lajunen and R. Laakonen, Acta. Chem. Scand., Ser. A, A42, 254 (1988).

47.Y. Chiang, A. J. Kresge, P. A. Obraztsov and J. B. Tobin, Croat. Chem. Acta, 65, 615 (1992); Chem. Abstr., 118, 147004 (1993).

48.D. Farca˜oiu,´ G. Marino and C. S. Hsu, J. Org. Chem., 59, 163 (1994).

49.A. Atsushi, Y. Setsuo and Y. Tatsuo, Nippon Kagaku Kaishi, 976 (1987); Chem. Abstr., 108, 36942 (1988).

50.A. Atsushi, Y. Setsuo and Y. Tatsuo, Nippon Kagaku Kaishi, 984 (1987); Chem. Abstr., 108, 36943 (1988).

51.A. Aoshima, S. Yamamatsu and I. Yamaguchi, Nippon Kagaku Kaishi, 1763 (1987); Chem. Abstr., 108, 166777 (1988).

52.A. Aoshima, S. Yamamatsu and I. Yamaguchi, Nippon Kagaku Kaishi, 1768 (1987); Chem. Abstr., 108, 72739 (1988).

53.S. Randriamahefa, R. Gallo, G. Raoult and P. Mulard, J. Mol. Catal., 49, 85 (1988); Chem. Abstr., 110, 230855 (1989).

54.I. V. Kozhevnikov, S. Ts. Khankhasaeva and S. M. Kulikov, Kinet. Katal., 30, 50 (1989); Chem. Abstr., 111, 114540 (1989).

55.K. P. Herlihy, Aust. J. Chem., 42, 1345 (1989).

56.R. S. Ryabova, G. F. Osipova and M. I. Vinnik, Izv. Akad. Nauk SSSR, Ser Khim., 1016 (1988); Chem. Abstr., 110, 7312 (1989).

57.M. A. Beckett, Inorg. Chim. Acta, 157, 171 (1989); Chem. Abstr., 111, 96409 (1989).

58.P. Wan, M. J. Davis and M.-A. Teo, J. Org. Chem., 54, 1354 (1989).

59.G. Carr, C. Dean and D. Whittaker, J. Chem. Soc., Perkin Trans. 2, 351 (1988).

60.M. Lajunen, M. Lahti and S. Heimo, Acta Chem. Scand., 43, 771 (1989).

61.S. W. Anderson and K. Yates, Can. J. Chem., 66, 2412 (1988).

1212

Pavel Kocovskˇy´

62.R. W. Franck, N. Kaila, M. Blumenstein, A. Geer, X. L. Huang and J. J. Dannenberg, J. Org. Chem., 58, 5335 (1993).

63.N. Kaila, M. Blumenstein, H. Bielawska and R. W. Franck, J. Org. Chem., 57, 4576 (1992).

64.J. Toullec, J. Chem. Soc., Perkin Trans. 2, 167 (1989).

65.A. J. Kresge and A. Y. Yin, J. Phys. Org. Chem., 1, 247 (1988).

66.A. J. Kresge and D. Ubysz, J. Phys. Org. Chem., 7, 316 (1994).

67.

¨

K. Osapay, J. Delhalle, K. M. Nsunda, E. Rolli, R. Houriet and L. Hevesi, J. Am. Chem. Soc.,

 

111, 5028 (1989).

68.

A. J. Kresge and Y. Yin, J. Phys. Org. Chem., 2, 43 (1989).

69.

G. W. Breton, K. Daus and P. J. Kropp, J. Org. Chem., 57, 6646 (1992).

70.

M. Kira, T. Maruyama and H. Sakurai, J. Am. Chem. Soc., 113, 3986 (1991).

71.

A. Sekiguchi, I. Maruki and H. Sakurai, J. Am. Chem. Soc., 115, 11460 (1994).

72.

J. C. Siria, M. Duran, A. Lledos´ and J. Bertran,´ J. Am. Chem. Soc., 109, 7623 (1987).

73.

C. Calvero, M. Duran, A. Lledos,´ O. N. Ventura and J. Bertran,´ J. Comput. Chem., 8, 481 (1987);

 

Chem. Abstr., 108, 111482 (1988).

74.

M. Sola, A. Lledos, M. Duran, J. Bertran´ and O. N. Ventura, J. Comput. Chem., 11, 170 (1990);

 

Chem. Abstr., 112, 197247 (1990).

75.

S. Ito and A. Kakehi, Bull. Chem. Soc. Jpn., 63, 2850 (1990).

76.

G. B. Sergeev, V. V. Smirnov, T. N. Rostovshchikova, N. V. Komissarova and Ye. V. Indoleva,

 

Tetrahedron, 43, 5853 (1987).

77.

L. M. Mascavage, H. Chi, S. La and D. R. Dalton, J. Org. Chem., 56, 595 (1991).

78.

L. M. Mascavage and D. R. Dalton, Tetrahedron Lett., 32, 3461 (1991).

79.

J. P. Richard, J. Am. Chem. Soc., 113, 4588 (1991).

80.

P. A. Krasutskii, A. A. Fokin, V. N. Rodionov, N. I. Kulik, N. V. Ambrosienko and A. G. Yur-

 

chenko, Zh. Org. Khim., 21, 992 (1991); Chem. Abstr., 115, 279167 (1991).

81.

J. Szepvolgyi, React. Kinet. Catal. Lett., 39, 15 (1989), Chem. Abstr., 111, 231642 (1989).

82.

S. Yamabe, T. Minato and S. Inagaki, J. Chem. Soc., Chem. Commun., 532 (1988).

83.

Y. Li, X. Wang, F. Jensen, K. N. Houk and G. A. Olah, J. Am. Chem. Soc., 112, 3922 (1990).

84.

T. Iwaoka, Ch. Kaneko, A. Sigihara and H. Ichikawa, J. Phys. Org. Chem., 6, 195 (1993).

85.

L. M. Raff, J. Chem. Phys., 95, 8901 (1991); Chem. Abstr., 117, 47577 (1992).

86.

V. Nguyen, X. Cheng and M. H. Morton, J. Am. Chem. Soc., 114, 7127 (1992).

87.

D. F. Shellhamer, S. L. Carter, R. H. Dunham, S. N. Graham, M. P. Spitsbergen, V. L. Heasley,

 

R. D. Chapman and M. L. Druelinger, J. Chem. Soc., Perkin Trans. 2, 159 (1989).

88.

M. Zupan, M. Metelko and S. Stauber, J. Chem. Soc., Perkin Trans. 1, 2851 (1993).

89.

S. Stavber, T. Sotler-Pecanˇ and M. Zupan, Tetrahedron, 50, 12235 (1994).

90.

H. Di Loreto and J. Czarnowski, J. Fluorine Chem., 66, 1 (1994); Chem. Abstr., 120, 190755

 

(1994).

91.

S. Yamabe, T. Tsuji and H. Hirao, Chem. Phys. Lett., 146, 236 (1988); Chem. Abstr., 110, 23002

 

(1989).

92.

H. I. Bloeminik, K. Hinds, A. C. Legon and J. C. Thorn, J. Chem. Soc., Chem. Commun., 1321

 

(1994).

93.

K. Shinoda and K. Yasuda, Bull. Chem. Soc. Jpn., 61, 4393 (1988).

94.

J. Beger, K. Krimse, B. Thomas and T. Vogel, Z. Chem., 29, 379 (1989).

95.

B.-L. Zhang, J. Qiu and Z.-H. Gao, J. Phys. Org. Chem., 2, 26 (1989).

96.

S. M. Farook, S. Viswanathan and R. Ganesan, Curr. Sci., 56, 73 (1987); Chem. Abstr., 107,

 

235733 (1988).

97.

J. Szepvolgyi, React. Kinet. Catal. Lett., 39, 15 (1989); Chem. Abstr., 111, 231642 (1989).

98.

V. A. Petrosyan, S. G. Mirzakhanyan, G. G. Mkryan, S. A. Arustamyan and G. T. Martirosyan,

 

Arm. Khim. Zh., 42, 120 (1989); Chem. Abstr., 111, 231599 (1989).

99.

G. B. Sergeev, G. T. Martirosyan, S. K. Akopyan, V. V. Smirnov, M. I. Shilina and

S.A. Mhitaryan, Dokl. Akad. Nauk SSSR, 295, 115 (1987); Chem. Abstr., 108, 93866 (1988).

100.F. Kh. Nizamutdinov, S. S. Shavanov, G. A. Tolstikov, V. D. Komissarov, N. Ya. Shafikov and

V.V. Shereshovets, Kinet. Katal., 29, 733 (1988); Chem. Abstr., 110, 7319 (1989).

101. S. A. Mkhitaryan, V. V. Smirnov, S. K. Akopyan, M. I. Shilina, G. T. Martirosyan and

G. B. Sergeev, Neftekhimia, 28, 803 (1988).

102.D. E. I. Bykov, V. V. Smirnov and S. V. Levanova, Kinet. Katal., 34, 467 (1993); Chem. Abstr., 120, 54003 (1994).

19. Electrophilic additions to double bonds

1213

103.J. L. M. Gordon, M. P. Hartshorn, R. J. Martyn, W. T. Robinson and G. J. Wright, Aust. J. Chem., 47, 279 (1994).

104.J. L. M. Gordon, M. P. Hartshorn, R. J. Martyn, A. J. Morgan, W. T. Robinson and G. J. Wright,

Aust. J. Chem., 47, 289 (1994).

105.J. L. M. Gordon, M. P. Hartshorn, R. J. Martyn, A. J. Morgan, W. T. Robinson and G. J. Wright, Aust. J. Chem., 47, 1071 (1994).

106.F. Tellier, R. Sauvetreˆ and J.-F. Normant, J. Organomet. Chem., 362, 23 (1989).

107.B. Galland, E. M. Evleth and M.-F. Ruasse, J. Chem. Soc., Chem. Commun., 898 (1990).

108.M. Klobukowski and R. S. Brown, J. Org. Chem., 59, 7156 (1994).

109.J. R. Chretien,´ J.-D. Coudert and M. F. Ruasse, J. Org. Chem., 58, 1917 (1993).

110.M. Cossi, M. Persico and J. Tomasi, J. Am. Chem. Soc., 116, 5373 (1994).

111.S. Yamabe and T. Minato, Bull. Chem. Soc. Jpn., 66, 3339 (1993).

112.B. Datta and T. K. D. Gupta, Acta Cienc. Indica, Chem., 18, 11 (1992); Chem. Abstr., 121, 8427 (1994).

113.G. Bellucci, R. Bianchini, C. Chiape, F. Marioni and R. Spanga, J. Am. Chem. Soc., 110, 546 (1988).

114.J. Starting, J. H. Wieringa and H. Wynberg, J. Chem. Soc., Chem. Commun., 907 (1969).

115.H. Slebocka-Tilk, R. G. Ball and R. S. Brown, J. Am. Chem. Soc., 107, 4504 (1985).

116.G. Bellucci, R. Bianchini, C. Chiappe, F. Marioni, R. Ambrosetti, S. Brown and H. SlebockaTilk, J. Am. Chem. Soc., 111, 2640 (1989).

117.G. Bellucci, R. Bianchini, C. Chiappe and R. Ambrosetti, J. Am. Chem. Soc., 111, 199 (1989).

118.A. J. Bennet, R. S. Brown, R. E. D. McClung, M. Klobukowski, G. M. Aarts, B. D. Santarsiero,

G.Bellucci and R. Bianchini, J. Am. Chem. Soc., 113, 8532 (1991).

119.G. Bellucci, C. Chiappe, F. Marioni and E. Marchetti, J. Chem. Soc., Perkin Trans. 1, 637 (1992).

120.G. Bellucci, C. Chiappe, F. Marioni and F. Marchetti, J. Phys. Org. Chem., 4, 387 (1991).

121.G. Bellucci, R. Bianchini, C. Chiappe, F. Marioni and R. Spanga, J. Am. Chem. Soc., 110, 546 (1988).

122.R. S. Brown, H. Slebocka-Tilk, A. J. Bennet, G. Bellucci, R. Bianchini and R. Ambrosetti, J. Am. Chem. Soc., 112, 6318 (1990).

123.C. Y. Zheng, H. Slebocka-Tilk, R. W. Nagorski, L. Alvarado and R. S. Brown, J. Org. Chem., 58, 2122 (1993).

124.G. Bellucci, R. Bianchini, C. Chiappe, R. Ambrosetti, D. Catalano, A. J. Bennett, H. SlebockaTilk, G. H. M. Aarts and R. S. Brown, J. Org. Chem., 58, 3401 (1993).

125.R. S. Brown, R. W. Nagorski, A. S. Bennett, R. E. D. McClung, G. H. M. Aarts, M. Klobukowski,

R.McDonald and B. D. Santarsiero, J. Am. Chem. Soc., 116, 2448 (1994).

126.M.-F. Ruasse, S. Motallebi, B. Galland and J. S. Lomas J. Org. Chem., 55, 2299 (1990).

127.R. S. Brown, H. Slebocka-Tilk, G. Bellucci, R. Bianchini and R. Ambrosetti, Ind. Chem. Libr.,

3 (Adv. Organobromine Chem. 1 ), 91 (1991); Chem. Abstr., 116, 105374 (1992).

128.G. Bellucci, R. Bianchini, C. Chiappe, R. S. Brown and H. Slebocka-Tilk, J. Am. Chem. Soc., 113, 8012 (1991).

129.G. Bellucci, C. Chiappe and F. Marioni, J. Am. Chem. Soc., 109, 515 (1987).

130.G. Bellucci, R. Bianchini, C. Chiappe and F. Marioni, J. Org. Chem., 55, 4094 (1990).

131.R. Bianchini and C. Chiappe, J. Org. Chem., 57, 6474 (1992).

132.G. Bellucci, R. Bianchini, C. Chiappe, V. R. Gadgil and A. P. Marchand, J. Org. Chem., 58, 3575 (1993).

133.G. Bellucci, G. Berti, R. Bianchini, G. Ingrosso and R. Ambrosetti, J. Am. Chem. Soc., 102, 7480 (1980).

134.H. Slebocka-Tilk, C. Y. Zheng and R. S. Brown, J. Am. Chem. Soc., 115, 1347 (1993).

135.R. W. Nagorski, H. Slebocka-Tilk and R. S. Brown, J. Am. Chem. Soc., 116, 419 (1994).

136.G. Bellucci and C. Chiappe, J. Org. Chem., 58, 7120 (1993).

137.R. W. Nagorski and R. S. Brown, J. Am. Chem. Soc., 114, 7773 (1992).

138.V. V. Smirnov, A. N. Miroshnichenko and M. I. Shilina, Kinet. Katal., 31, 558 (1990); Chem. Abstr., 113, 114448 (1990).

139.G. Angelini and M. Speranzi, J. Am. Chem. Soc., 103, 3792 (1981).

140.M.-F. Ruasse, S. Motallebi and B. Galland, J. Am. Chem. Soc., 113, 3440 (1991).

141.M.-F. Ruasse and S. Motallebi, J. Phys. Org. Chem., 4, 527 (1991).

142.H. B. Vardhan and R. D. Bach, J. Org. Chem., 57, 4948 (1992).

143.V. F. Anikin and T. I. Levandovskaya, Zh. Org. Khim., 24, 1064 (1988); Chem. Abstr., 110, 94244 (1989).

1214

Pavel Kocovskˇy´

144.Y. Kurita and C. Takayama, Tetrahedron, 46, 3789 (1990).

145.X. Wang, Y. Li, Y.-D. Wu, M. N. Paddon-Row, N. G. Rondan and K. N. Houk, J. Org. Chem., 55, 2601 (1990).

146.O. Arjona, R. Fernandez´ de la Pradilla, J. Plumet and A. Viso, J. Org. Chem., 56, 6227 (1991).

147.(a) M. Balci and M. Harmandar Tetrahedron, 44, 3645 (1988).

(b) O. Cakmak¸ and M. Balci, J. Org. Chem., 54, 181 (1989).

148.O. Cakmak,¸ T. Hokelek,¨ O. Buy¨ukg¨ung¨or¨ and M. Balci, Tetrahedron Lett., 31, 2345 (1990).

149.O. Cakmak¸ and M. Balci, Tetrahedron Lett., 31, 2349 (1990).

150.M. Balci, O. Cakmak¸ and T. Hokelek,¨ J. Org. Chem., 57, 6640 (1992).

151.

 

´

O. Arjona, R. Fernandez´ de la Pradilla, L. Garcia, A. Mallo and J. Plumet, J. Chem. Soc., Perkin

 

Trans. 2, 1315 (1989).

152.

B. A. Shainyan, I. Eventova and Z. Rappoport, J. Chem. Soc., Perkin Trans. 1, 1281 (1993).

153.

P. P. M. H. Dols, A. J. H. Klunder and B. Zwannenburg, Tetrahedron, 49, 11373 (1992).

154.

F. M. Dean, L. Prakash, S. S. Verma and R. L. Mital, J. Chem. Res. (S), 194 (1990).

155.

S. F. Paredes and S. J. A. Lopez, Afinidad, 44, 269 (1987); Chem. Abstr., 108, 93867 (1988).

156.

R. H. Jin, B.-Zh. Yin, Zh.-T. Jin and K. Imafuku, J. Heterocycl. Chem., 27, 583 (1990).

157.

E. M. G. de Casal, B. M. Vuano and M. C. Cabaleiro, J. Chem. Res. (C), 38 (1991).

158.

M. F. Meidine, A. G. Avent, A. D. Darwish, G. J. Langley, W. Locke, O. Ohashi, H. W. Kroto,

 

R. Taylor and D. R. M. Walton, J. Chem. Soc., Perkin Trans. 2, 2125 (1994).

159.

M. Masnyk and J. Fried, Tetrahedron Lett., 30, 3247 (1989).

160.

G. Cerichelli, C. Grande, L. Luchetti and G. Mancini, J. Org. Chem., 56, 3025 (1991).

161.

K. Smith and K. B. Fry, J. Chem. Soc., Chem. Commun., 187 (1992).

162.

Y. Tanaka, H. Sakuraba and H. Nakanishi, J. Org. Chem., 55, 564 (1990).

163.

M. Garcia-Garibay, J. R. Scheffer, J. Trotter and F. Wireko, Tetrahedron Lett., 29, 1485 (1988).

164.

E. Laurent, R. Tardivel, H. Benotmane and A. Bensadaf, Bull. Soc. Chim. Fr., 468 (1990).

165.

S. Hamman, T. Benaissa and C. G. Beguin,´ J. Chem. Res. (S), 20 (1992).

166.

M. Shimizu, Y. Nakahara and H. Yoshioka, J. Chem. Soc., Chem. Commun., 1881 (1989).

167.

G. Alvernhe, D. Anker, A. Laurent, G. Haufe and C. Begiun, Tetrahedron, 44, 3551 (1988).

168.

V. N. Zelikman, E. A. Mendeleeva, V. V. Smirnov, N. V. Zyk, M. I. Shilina and N. S. Zefirov,

 

Dokl. Akad. Nauk, 327, 233 (1992); Chem. Abstr., 118, 168512 (1993).

169.

ˇ

 

B. Sket, P. Zupet and M. Zupan, Tetrahedron, 46, 2503 (1990).

170.

B. Zajc and M. Zupan, Tetrahedron, 46, 6161 (1990).

171.

S. Kajigaeshi, M. Moriwaki, S. Fujisaki, T. Kakinami and T. Okamoto, Bull. Chem. Soc. Jpn.,

 

63, 3033 (1990).

 

172.

A. Hassner and W. Dehaen, J. Org. Chem., 55, 2243 (1990).

173.

N. S. Zefirov, V. V. Zhdankin, A. S. Koz’min, A. A. Fainzilberg, A. A. Gakh, B. I. Ugrak and

 

S. V. Romaniko, Tetrahedron, 44, 6505 (1988).

174.

V. L. Healsley,

S. L. Elliot, P. E. Erdman, D. E. Figueroa, K. W. Krosley, T. J. Louie,

 

H. B. Moore, B. P. Mudge, D. F. Nogales, J. Nordeen, M. L. Oakes, J. W. Rosbrugh, A. M. Sauer-

 

brey, T. Y. Shibuya, M. S. Stanley, C. C. Stewart, D. F. Shellhamer and G. E. Healsley, J. Chem.

 

Soc., Perkin Trans. 2, 393 (1991).

175.

Yu. M. Bakshi,

A. I. Gel’bshtein, E. I. Gel’perin, M. P. Dimitrieva, A. G. Zyskin and

Yu. S. Snagovskii, Kinet. Katal., 32, 740 (1991), Chem. Abstr., 115, 182329 (1991).

176.L. N. Shkaraputa, A. V. Kononov and L. A. Tishchenko, Neftepererab. Neftekhim. (Kiev), 41, 67 (1991); Chem. Abstr., 118, 80270 (1993).

177.J. Beger and T. Vogel, Z. Chem., 28, 289 (1988).

178.C. Karunakaran and J. Ganapathy, J. Phys. Org. Chem., 3, 235 (1990).

179.C.-H. Yang, J.-S. Wu and W.-B. Ho, Tetrahedron, 46, 4205 (1990).

180.X. Jiang, T. Xu and J. Wu, Acta Chim. Sin., Engl. Ed., 285; (1990) Chem. Abstr., 112, 177700 (1990).

181.V. L. Heasley, T. J. Lovie, D. K. Luttrull, M. D. Millar, H. B. Moore, D. F. Nogales, A. M. Sauerbrey, A. B. Shevel, T. Y. Shibuya, M. S. Stanley, D. F. Shellhamer and G. E. Heasley, J. Org. Chem., 53, 2199 (1988).

182.C. Karunakaran and C. Venkatachalapathy, Bull. Chem. Soc. Jpn, 63, 2404 (1990).

183.M. Yoshida, H. Mochizuki, T. Suzuki and N. Kamigata, Bull. Chem. Soc. Jpn., 63, 3704 (1990).

184.M. Yoshida, S. Sasage, K. Kawamura, T. Suzuki and N. Kamigata, Bull. Chem. Soc. Jpn., 64, 416 (1991).

185.Y. Honda, Y. Kataoka, M. Unno and G. Tsuchihashi, Chem. Lett., 2133 (1987).

Соседние файлы в папке Patai S., Rappoport Z. 1997 The chemistry of functional groups. The chemistry of double-bonded functional groups