Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
26
Добавлен:
15.08.2013
Размер:
144.71 Кб
Скачать

IV.4 Allylpalladation and Related

Reactions of Alkenes, Alkynes, Dienes,

and Other -Compounds

TAKASHI TAKAHASHI and TAKAYUKI DOI

A. INTRODUCTION

Allylic halides react intermolecularly with alkynes in the presence of palladium(II) catalysts (Scheme 1).[1],[2] The products are vinylic halides, which have further been elaborated by Ni(CO)4-mediated carbonylation[3] and Pd-catalyzed cross-coupling reaction, for example, with organotin compounds (Scheme 2).[4]

There are only a few cases of an intermolecular reaction of a -allylpalladium complex with an alkene. The carbopalladation of norbornadiene with a stoichiometric amount of a -allylpalladium complex to yield an allyl-substituted -norbornenylpalladium species has been reported.[5] In the context of mechanistic studies of Pd-catalyzed alkene dimerization, the insertion of ethylene into a cationic -allylpalladium complex was also reported as a stoichiometric reaction in 1996 (Scheme 3).[6]

B. INTRAMOLECULAR REACTION OF A -ALLYLPALLADIUM

COMPLEX WITH ALKENES AND DIENES

In 1987, Oppolzer and Gaudin reported an intramolecular version of the reaction of a - allylpalladium complex with an alkene.[7] The reactions of various 2,6-octadienyl acetate derivatives were achieved in the presence of Pd(dba)2-PPh3 at 70–80 °C leading to 2-vinyl- 1-alkenylidenecyclopentane derivatives in yields ranging from 20% to 98% (Schemes 4 and 5). With one or two methyl groups attached at the alkenyl terminus, the acyclic alkenylallyl acetates under Pd(II) catalysis cyclized to yield 1-alkenyl-2-vinylcyclopentane derivatives (Scheme 6).[7]–[11] A -allylpalladium intermediate generated from an allyl ester can also intramolecularly carbopalladate a terminal diene or allene unit (Scheme 7, for the latter see also Sect. IV.7).[12],[13] These cyclizations lead to new -allylpalladium intermediates, which are eventually trapped by acetate to yield allyl acetates.

Handbook of Organopalladium Chemistry for Organic Synthesis, Edited by Ei-ichi Negishi ISBN 0-471-31506-0 © 2002 John Wiley & Sons, Inc.

1449

1450

IV Pd-CATALYZED REACTIONS INVOLVING CARBOPALLADATION

 

 

 

 

 

 

 

CH3

 

Ph

 

Me +

Cl

PdCl2 (PhCN)2

 

Ph

 

 

20 °C

 

 

 

 

 

 

 

 

 

 

 

 

 

Cl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

80%

 

 

 

 

 

 

 

SiMe3

 

n-C6 H13

 

+

Cl

PdCl2(PhCN)2

 

n-C6H13

 

 

 

 

 

 

 

 

SiMe3

 

20 °C

 

Cl

 

 

 

 

 

 

 

 

 

 

 

91%

 

 

 

 

 

 

>98% stereoselective

 

 

 

 

 

 

 

 

 

 

Scheme 1

 

 

 

 

 

Br

Me3Si

 

 

 

 

 

 

PdCl2(PhCN)2

Ni(CO)4

 

Me3Si

 

 

 

 

MeOH, Et N

 

 

Me3Si

 

 

Br

 

3

 

 

 

25 °C 62%

MeCN, 30 °C

O

 

 

 

 

 

 

 

 

 

65%

CO2 Me

 

 

 

 

 

 

 

 

 

 

5 mol % PdCl2(MeCN)2,

 

Ph

 

n-Bu

+

Br

20

°C, 2 h

 

 

 

 

 

n-Bu

 

 

 

then, PhSnBu3, HMPA,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TFP, Bu4 NCl, 80 °C

 

24%

 

TFP = tris-(2-furyl)phosphine

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 2

 

 

 

 

 

CF3

 

 

 

 

 

 

O

 

 

 

 

 

 

Pd

 

+

 

 

Pd

 

 

 

O

 

 

 

 

 

 

 

 

 

L

 

 

 

 

CF3

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

+

 

 

 

 

PCy3

 

PCy3

 

 

 

Pd

 

 

 

Pd

 

 

 

 

> 20 °C

 

 

 

 

 

 

 

 

 

 

 

Scheme 3

The key reactive intermediate in all these cyclizations is an alkene-coordinated cationic -allylpalladium complex (Scheme 8), the formation of which is probably promoted by protonation of the acetoxy group when allylic acetates are used as staring materials.[6],[14] It is thus understandable why acetic acid is mostly used as a crucial solvent. The -alkylpalladium intermediate generated through alkene insertion can undergo

Reference

[7]

Ratio

 

 

 

Yield(%)

82

Y

R

Temperature [°C]

 

X

70

 

 

Solvent

THF

 

R

 

 

Y

X

Catalyst

A

 

AcO

 

 

 

 

R

H

 

 

 

2

 

 

Y

-p-MePh)

 

 

 

2

 

 

 

C(SO

 

 

X

H

[7]

[7]

[7]

[7]

[8]

[8]

[8]

[9]

[9]

[9]

[8]

[10]

[10]

[10]

 

 

 

 

 

 

 

only (Z/E)

only

 

 

 

 

 

 

 

 

 

 

 

(Z)

96:4

(E)

 

 

 

 

20

65

77

75

72

69

72

Notnoted

Notnoted

57

77

80

98

99

80

80

80

80

80

80

80

80

80

80

80

80

80

80

THF

MeOH

AcOH

AcOH

AcOH

AcOH

AcOH

AcOH

AcOH

AcOH

AcOH

AcOH

AcOH

AcOH

A A A A B B B A A C B B C C

 

 

 

 

 

 

 

 

 

3

 

 

 

 

H H H H H H H

(Z)-Ph

(E)-Ph

(E)-SiMe

H

H H H

2

 

 

2

 

2

 

 

 

 

 

2

 

2

 

 

CMe

 

 

 

 

 

 

 

Me)

 

 

 

 

Ph

 

 

 

 

2

Et)

 

Ph)

 

 

2

Ph

CH

Ts-N

 

 

 

 

C(CO

 

 

C(COO)

NCH

NCO

 

 

 

N(Ts)CH-

C(CO

 

C(SO

2

 

 

 

2

2

 

 

 

 

 

2

 

2

H

H

H H H H H H H

H

H

OAc

OAc

OAc

Scheme 4

3. toly)-o

P(, 2

Pd(dba)C:

;

4 ) 3 Pd(PPhB:

;

3 PPh3

,

2 Pd(dba)A:

1451

1452 IV Pd-CATALYZED REACTIONS INVOLVING CARBOPALLADATION

 

 

Y

 

 

 

 

Y

 

 

 

XO

 

Pd(PPh3)4

 

 

 

 

 

 

 

 

AcOH, 80 °C

 

 

 

 

 

R

 

 

 

 

R

 

 

 

 

R

X

 

Y

 

Yield (%)

Reference

 

 

 

 

 

 

 

 

 

 

 

 

H

Bz

 

NCOPh

81

[8]

 

 

 

H

H

NSO2-p-MePh

78

[8]

 

 

 

C6H5

Ac

 

CH2

49

[11]

 

 

 

4-Me-C6H4

Ac

 

CH2

67

[11]

 

 

 

3,5-(MeO)2-C6H3

Ac

 

CH2

94

[11]

 

 

 

 

 

Scheme 5

 

 

 

 

 

Y

 

 

 

 

Y

 

 

 

 

 

R1

 

AcOH, 80 °C

 

R3

 

 

 

 

 

 

 

 

 

 

 

AcO

R2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Substrate

Y

R1

R2

R3

Catalyst

Yield (%)

trans/cis Reference

(E)

NCOCF3

Me

H

H

B

76

88:12

[8]

(Z )

NCOCF3

Me

H

H

B

59

91:9

[8]

(E)

NCOCF3

H

Me

H

B

67

28:72

[8]

(Z )

NCOCF3

H

Me

H

B

51

30:70

[8]

(Z )

C(SO2-p-MePh)2

H

Me

H

A

91

Single isomer

[7]

(Z )

C(SO2-p-MePh)2

Me

Me

Me

A

71

Single isomer

[7]

A: Pd(dba)2, 3 PPh3; B: Pd(PPh3)4.

 

 

 

 

 

 

 

 

 

Scheme 6

 

 

 

 

 

R2 R1

 

 

 

R2 R1

 

 

R3

 

Pd(dba)2·CHCl3

R3

 

OAc

 

 

 

90 °C

 

 

 

 

 

AcO

 

[12]

 

 

 

 

 

 

 

 

 

 

 

R1

R2

R3

Solvent

 

Additive

Yield (%)

trans /cis

SO2Ph

SO2Ph

H

MeCN

 

None

6070

2.3:1

SO2Ph

SO2Ph

H

MeCN

AcOH, LiOAc

87

Not noted

SO2Ph

SO2Ph

H

AcOH

AcOH, LiOAc

71

2.5:1

SO2Ph

SO2Ph

Me

MeCN

AcOH, LiOAc

63

1.4:1

H

SO2Ph

H

MeCN

AcOH, LiOAc

68

cis only

H

SO2Ph

Me

MeCN

AcOH, LiOAc

62

cis only

CO2Et

CO2Et

H

AcOH

 

PPh3

75

Not noted

Scheme 7

IV.4 ALLYPALLADATION AND RELATED REACTIONS

1453

 

Pd(PPh3)4

OAc

 

 

 

 

AcOH, 80 °C

 

AcO

 

64%

 

 

 

[13]

 

 

 

Scheme 7 (Continued )

 

OAc

 

 

 

+RO_

Pd0

 

PdII

 

PdII

 

 

 

β-hydride

 

 

 

 

elimination

 

 

 

 

_Pd—H

 

 

 

 

 

 

PdII

 

 

intramolecular alkene

carbonylation

transmetallation

insertion

 

CO

 

R-SnR3

 

 

 

 

Pd

 

 

 

 

R

PdII

O

Pd

II

 

 

 

 

Scheme 8

-hydride elimination to terminate the reaction sequence leading to a diene. Domino-type reaction sequences are possible in that another intramolecular alkene insertion, a carbonylation, or a transmetallation forming a further new carbon–carbon bond can occur. These cases are discussed below.

C. STEREOCHEMICAL ASPECTS

The stereochemical outcome of such intramolecular carbopalladations, which is influenced by the number and nature of the substituents at the various positions of the acyclic system, was examined by several groups (Scheme 9).[8],[15]–[18]

Rather efficient chirality transfer was observed for the alkene insertion into the - allylpalladium complex prepared from various acyclic allylic acetates in the synthesis of the 11-deoxy analog of Stork’s intermediate for the synthesis of prostaglandins (Scheme 10).[19]

This method was utilized in the preparation of bicyclic compounds consisting of five-, six-, and seven-membered rings. Oxidative addition of allylic acetates to palladium(0) takes place with inversion of configuration and intramolecular alkene insertion into the

1454

 

IV

Pd-CATALYZED REACTIONS INVOLVING CARBOPALLADATION

 

 

 

 

 

 

 

 

 

 

R3 R4

 

 

R 2 R

3

4

 

 

 

 

 

 

 

 

 

R2

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

R1

 

 

 

Pd(PPh3)4

R 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MeCN, 80 °C

 

 

 

 

 

 

 

 

 

 

AcO

 

 

 

 

[15]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R1

R2

 

 

R3

R4

Yield (%)

 

(Z)/(E)

 

 

 

 

 

 

 

OH

Me

 

 

H

H

75

 

4:1

 

 

 

 

 

 

 

 

OH

Me

 

 

Me

Me

82

 

5:1

 

 

 

 

 

 

 

 

OH

Ph

 

 

allyl

H

80

 

1.4:1

 

 

 

 

 

 

 

 

OH

—(CH2)4

H

75

 

1.3:1

 

 

 

 

 

 

 

 

 

R4

 

Y

R2

 

 

R4

 

Y R2

 

 

 

 

 

 

 

 

 

 

 

R3

Pd(PPh )

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

3 4

 

 

R3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

AcOH, 80 °C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AcO

X

 

 

 

 

X

 

Yield

cis/

Ref-

 

 

 

 

 

 

 

 

 

 

 

 

 

R1

 

 

R2

R3

 

 

R4

 

 

 

 

 

 

 

 

 

X

Y

 

(%)

trans

erence

H

 

C6H12

H

 

 

H

 

H

O

 

75

50:50

[8]

Me SO2-p-MePh

Me

 

 

H

 

H

CH2

 

38

1:99

[16]

H SO2-p-MePh

H

 

 

H

 

H

C(CO2Me)2—CH2— 12

82:18

[17]

Me SO2-p-MePh

H

 

 

H

 

H

C(CO2Me)2—CH2— 25

98:2

[17]

H

 

 

 

H

H

Allyl— O—CH2

 

OAc

O

 

88

trans only

[18]

H

 

 

 

H

H

 

CH2OCMe2OCH— OAc

O

 

84

trans only

[18]

H

 

 

 

H

H

 

 

 

 

 

OAc

CH2

 

80

trans only

[18]

 

 

 

CH2OCMe2 OCH—

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

O

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

OAc

 

 

 

 

Am

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

OAc

14(R)

 

Am

 

12(R)

 

 

 

 

 

 

14(S)

 

 

 

 

 

 

 

 

 

 

 

 

 

Am

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OH

 

 

 

 

 

 

 

 

 

 

 

OBn

1. Pd(PPh3)4 ( 20 mol %)

 

 

 

 

 

 

 

OBn

B

 

 

 

 

 

 

 

A

 

 

 

 

AcOH, PhH (2:1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

80 °C, 3.5 h

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O O

 

 

 

 

 

 

 

 

 

O

O

 

 

 

 

 

2. PPTs, acetone

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OAc

 

 

 

OAc

 

20 °C, 2 h

 

O

 

 

 

 

 

 

 

 

 

14(S)

 

Am

 

 

 

 

 

 

 

 

 

 

14(R)

Am

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Am

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OBn

 

 

 

 

 

 

 

 

 

OBn

 

 

D

 

 

 

12(S)

 

 

 

 

 

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Configuration of

 

 

 

OH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Starting Material

Yield (%)

 

Major Product

 

Chirality Transfer (%)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

 

 

 

65

 

 

 

12(R)

 

95

 

 

 

 

 

 

B

 

 

 

50

 

 

 

12(S)

 

95

 

 

 

 

 

 

C

 

 

 

64

 

 

 

12(R)

 

81

 

 

 

 

 

 

D

 

 

 

56

 

 

 

12(S)

 

84

 

 

Scheme 10

IV.4 ALLYPALLADATION AND RELATED REACTIONS

1455

resultant -allylpalladium complex proceeds with retention of configuration to provide bicyclic products in a stereospecific manner (Scheme 11).[20]–[23] However, when the-allylpalladium moiety produced on a ring is trans-positioned with respect to the alkene tether and thus can only insert into the double bond via a highly strained transition structure, epimerization may occur before the bicyclic compound is formed (entry 5 in

Scheme 11).

 

E

E

 

 

 

E

E

E

E

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

m

 

n

 

 

m

n

m

n

 

 

7 mol %

 

 

 

 

AcO

 

 

 

 

 

 

 

 

 

Pd(PPh3)4

 

Pd

 

H

 

trans

 

AcOH, 70 °C

 

 

 

cis

 

 

 

 

[20]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m = 2

epimerization

 

 

 

 

 

 

 

 

n = 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E

E

E

E

 

E

E

 

 

 

H

 

 

 

 

 

 

 

 

 

m

 

n

 

 

m

n

m

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AcO

 

 

 

 

 

Pd

 

 

H

 

 

 

cis

 

 

 

 

trans

 

 

 

 

 

 

 

 

 

Entry

Starting Material

m

n

Yield (%)

Ratio (cis/trans)

1

 

 

trans

 

1

1

67

>99:1

2

 

 

trans

 

2

1

84

>98:2

3

 

 

trans

 

2

2

60

>99:1

4

 

 

trans

 

3

1

73

99:1

5

 

 

cis

 

2

1

55

>98:2

6

 

 

cis

 

2

2

69

5:95

7

 

 

cis

 

3

1

80

2:98

 

OAc

E

E

 

 

OAc

E E

 

 

 

 

O

 

 

 

H

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

Pd(PPh3)4

 

 

 

 

AcO

 

 

 

AcOH, 70 °C

 

 

 

 

 

 

 

83–89%

H

E = CO2Et

 

 

 

 

 

[21]

 

 

 

 

OAc

E

E

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

AcO

Scheme 11 (Continued)

1456

IV Pd-CATALYZED REACTIONS INVOLVING CARBOPALLADATION

OAc

O OiPr

TsN

E E

TBDPSO

AcO

E E

TBDPSO

AcO

 

OAc

 

Pd(PPh3)4

 

O

 

 

AcOH, 80 °C

H

 

82%

TsN

H

[22]

 

 

 

TBDPSO H E E

Pd(PPh3)4

AcOH, 70 °C

87% H E = CO2Et

[23]

TBDPSO

 

E

E

 

H

 

Pd(PPh3)4

 

 

 

 

AcOH, 70 °C

 

 

 

 

54%

H

 

E = CO2Me

[23]

 

 

 

 

 

 

 

trans/cis = 93:7

 

 

 

 

Scheme 11

 

 

 

 

D. DOMINO AND CASCADE REACTIONS INITIATED BY-ALLYLPALLADIUM INSERTION INTO ALKENES OR ALKYNES

The Pd-catalyzed cyclization of alkenyland alkynyl-tethered allylic acetates gives - alkyland alkenylpalladium intermediates, respectively, which can undergo further intramolecular alkene insertion, carbonylation, and transmetallation, respectively, to form additional carbon–carbon bonds (Scheme 8), as exemplified for such cascade reactions with insertion of a tethered alkene in Scheme 12.[13],[24]–[27]

Alkene and alkyne insertions followed by carbonylation are shown in Schemes 13,[10],[28]–[33] 14,[34] and 15.[21],[35],[36] Interestingly, alkene insertion occurs faster than CO insertion. In several cases, the carbonylation was succeeded by hydrolysis to provide the corresponding acid or yet another carbon–carbon bond formation in the same operation.

Examples of alkene and alkyne insertions followed by transmetallation with organotin compounds as well as boranates, and eventually reductive elimination are shown in Scheme 16.[10],[18],[37]–[39] These reactions do not only require that the transmetallation process as outlined in Scheme 8 be faster than -hydride elimination, but also that the alkene insertion prevails over allylic coupling.

IV.4 ALLYPALLADATION AND RELATED REACTIONS

1457

E

 

E

Pd(dba)2, TFP

E H

H E

E

 

E

AcOH, 110 °C

E

E

 

 

 

50%

 

H H

 

 

 

[24]

 

 

 

 

H

H

OAc

 

TFP = tri-(2-furyl)phosphine

E = CO2Me

 

 

 

E

E

Pd(OAc)2, PPh3

H E E

H E E

 

 

PhOMe, NaO2C-H

 

 

AcO

 

110 °C, 62%

H

 

 

 

[25]

H H

 

 

 

Pd

L

E = CO2Me

Pd (PPh3)4, AcOH, 80 °C

H

 

H

 

+

 

 

67%

 

 

 

 

H

 

OAc

[26]

H

 

H

 

 

 

 

 

 

 

5

:

1

R

R O

R

O

Pd(PPh3)4, AcOH, CO

+

 

 

 

75 or 90 °C

O

CO2H

AcO

[13],[27]

 

 

 

R = H (22%)

R = Me (47%)

 

R = Me (30%)

Scheme 12

E. ASYMMETRIC VERSION OF THE ALKENE INSERTION INTO A -ALLYLPALLADIUM COMPLEX

A few examples of asymmetric cyclizations induced by palladium(0) catalysts with various chiral phosphine ligands have been reported, but the achieved enantioselection has been rather low or at best moderate (Scheme 17).[40] Further studies are definitely needed to improve the catalytic asymmetric version of this intramolecular carbopalladation.

1458

IV Pd-CATALYZED REACTIONS INVOLVING CARBOPALLADATION

AcO

AcO

H

Pd(PPh3)4,AcOH, CO (1 atm)

80 °C

80%

[28],[29]

Pd(PPh3)4, AcOH, CO (1 atm)

 

80 °C

 

50%

 

[28],[29]

E E

Pd2(dba)3 ·CHCl3

 

tri-o-tolylphosphine

 

AcOH, CO,

 

80 °C, 0.1 h

 

H

 

 

H

H

 

 

H

H

CO2 H

O

 

 

O

62

:

12

:

26

H

 

H

 

 

 

H

 

H

 

O

 

O

 

 

1

:

 

3

 

E E

 

 

 

 

 

 

 

 

 

81%

 

 

 

CO

H E = CO2Et

 

AcO

OAc

 

 

 

 

 

AcO

 

 

 

 

[10]

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pd2(dba)3 ·CHCl3

 

 

 

 

 

 

 

 

 

TFP, AcOH, CO

 

 

 

 

 

 

OAc

 

 

45 °C

 

 

CO2H

 

 

 

 

58%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[30]

 

 

 

 

 

 

 

 

 

 

Pd(dba)2, PPh3

 

 

 

 

 

MeO2CO

 

 

AcOH, CO (1 atm)

 

 

H

 

 

 

 

 

 

 

45 °C

 

 

 

 

 

 

 

 

 

 

56%

 

 

HO2C

 

 

 

 

 

 

[31],[32]

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E

E

 

 

 

 

 

E

E

 

 

 

 

 

Pd2(dba)3· CHCl3, PPh3

 

 

 

 

 

 

R

LiCl, CO, THF, H2O

 

R

 

 

 

 

70 °C

R = H (43%)

 

 

 

 

 

AcO

 

 

[33]

R = Me (57%)

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

E = CO2M e

 

 

E

E

Pd2(dba)3 ·CHCl3

 

E E

 

 

 

 

 

 

 

 

 

E

E

 

 

 

tri-o-tolylphosphine

 

 

 

 

 

 

 

 

 

Et3 N

 

 

 

 

AcOH, CO,

 

 

 

 

 

 

 

 

80 °C, 0.1 h

 

 

 

MeOH

 

AcO

OAc

 

 

 

75%

AcO

 

CO2Me

 

 

[10]

 

CO2Me

 

E = CO2Et

 

 

 

 

CHO

 

 

 

 

 

 

 

 

 

 

Scheme 13

Соседние файлы в папке Negishi E. 2002 Handbook of organopalladium chemistry for organic synthesis