Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
25
Добавлен:
15.08.2013
Размер:
716.54 Кб
Скачать

R1M + R2X

Pd

Natl. Prod.

 

 

 

 

III.2.18 Synthesis of Natural Products via Palladium-Catalyzed Cross-Coupling

ZE TAN and EI-ICHI NEGISHI

A. INTRODUCTION

Since the discovery of Pd-catalyzed cross-coupling in the mid-1970s, it has been increasingly applied to the synthesis of essentially all types of organic compounds. Together with more conventional cross-coupling methodologies involving the use of Mg, Li, and Cu, Pd-catalyzed cross-coupling reactions and related Ni-catalyzed reactions have firmly occupied one of the most central positions in the organic synthetic methodology. Especially noteworthy are their applications in the area of complex natural products as well as oligomeric and polymeric materials. Many of their applications to the syntheses of natural products are indeed discussed throughout the preceding sections in this part, mainly from the viewpoint of synthetic methodology.

In recognition of the special significance and high level of interest among synthetic chemists, their applications to the synthesis of natural products are systematically catalogued in this section primarily in the form of a series of tables, which are arranged in the order of some of the preceding and pertinent sections, as listed below. Even in those cases where some specific examples are discussed in preceding sections, they are listed again in this section for the purpose of cataloguing all examples of natural products synthesis via Pd-catalyzed crosscoupling.

 

 

 

Pertinent

 

Type of

 

Section

Subsection

Cross-Coupling

Table Number

Number

 

 

 

 

B

Aryl–aryl coupling

1

III.2.5

C

Alkenyl–aryl,

2, 3

III.2.6

 

aryl–alkenyl, and

 

 

 

alkenyl–alkenyl

 

 

 

couplings

 

 

(Continued )

Handbook of Organopalladium Chemistry for Organic Synthesis, Edited by Ei-ichi Negishi ISBN 0-471-31506-0 © 2002 John Wiley & Sons, Inc.

863

864

III

Pd-CATALYZED CROSS-COUPLING

 

 

 

D

Heteroaromatics

4

III.2.7

 

E

Alkyne

5, 6

III.2.8

 

 

synthesis

 

 

 

F

Synthesis of

7

III.2.9

 

 

diarylmethanes,

 

 

 

 

allylated and

 

 

 

 

propargylated

 

 

 

 

arenes, and

 

 

 

 

1,4-dienes

 

 

 

 

and 1,4-enynes

 

 

 

G

Alkylation,

8

III.2.11

 

 

homoallylation,

 

 

 

 

homopropargylation,

 

 

 

 

and homobenzylation

 

 

 

H

Cross-coupling

9

III.2.12

 

 

involving

 

 

 

 

-hetero-substituted

 

 

 

 

organic

 

 

 

 

electrophiles

 

 

 

I

Cross-coupling

10

III.2.13

 

 

involving

 

 

 

 

-hetero-substituted

 

 

 

 

organometals

 

 

 

J

Cross-coupling

11

III.2.14

 

 

involving

 

 

 

 

-hetero-substituted

 

 

 

 

compounds

 

 

 

K

Conjugate

 

 

 

 

substitution

12

III.2.15

 

 

 

 

 

B. SYNTHESIS OF NATURAL PRODUCTS VIA Pd-CATALYZED

ARYL–ARYL COUPLING

Pdor Ni-catalyzed aryl–aryl coupling has emerged over the past two to three decades as one of the most general and satisfactory methods for the synthesis of biaryls. Various fundamental and synthetic aspects of Pd-catalyzed aryl–aryl coupling are discussed in Sect. III.2.5, and some detailed aspects of the synthesis of magnolol and ( )-monoter- penylmagnolol along with that of steganone via Ni-catalyzed aryl – aryl coupling are also presented in the same section.

III.2.18 SYNTHESIS OF NATURAL PRODUCTS VIA CROSS-COUPLING

865

The following rational procedure for finding the optimal protocol for a given biaryl synthesis with respect to metal countercations and catalysts is once again presented below as a reminder.

1.In cases where arylmagnesium derivatives are more conveniently available than the others, as is often the case, their Nior Pd-catalyzed reaction with aryl halides and related electrophiles should be considered first. It should also be reminded that, in aryl–aryl coupling, Ni catalysts are often satisfactory and competitive with Pd catalysts.

2.If the Mg–Ni and Mg–Pd combinations prove to be less than satisfactory, the simplest and generally most dependable modification has been to add 0.5–1 equiv of

dry ZnCl2 or ZnBr2. The Zn–Ni and Zn–Pd combinations have often been two of the most satisfactory ones in terms of (i) fast reaction rate, (ii) high product yield, and

(iii)selectivity features including chemoselectivity.

3.Although several other metals including Al, Si, Sn, and Cu have served as satisfactory countercations in less demanding cases, the B–Pd combination appears to be currently the only one that rivals or possibly even surpasses the Zn–Ni and Zn–Pd combinations, even though the preparation of arylboron derivatives via aryllithiums or arylmagnesium halides is more involved than the in situ generation of arylzincs. Although aryltins have been widely used and satisfactory in less demanding cases, they have been shown to be inferior to Zn and B in more demanding cases. So, the current scope of Pdor Ni-catalyzed aryl–aryl coupling with respect to metal cations may be represented by Scheme 1.

Li

B

The metals in bold are widely used in the Pd-catalyzed

 

Mg

Al Si

Ar-Ar coupling in general,

 

Cu Zn

Sn

Those in a circle are generally most satisfactory.

 

 

 

Scheme 1

The examples summarized in Table 1 represent most of the currently known syntheses of natural products involving Pd-catalyzed aryl–aryl coupling, which clearly indicate that Zn and B are indeed the two most frequently used metals.

C. SYNTHESIS OF NATURAL PRODUCTS VIA Pd-CATALYZED ALKENYL–ARYL, ARYL–ALKENYL, AND

ALKENYL–ALKENYL COUPLING

As detailed in Sect. III.2.6, Pd-catalyzed alkenyl–alkenyl coupling is probably the most general, selective, and satisfactory route to conjugated dienes of various types. Similarly, Pd-catalyzed alkenyl–aryl or aryl–alkenyl coupling provides a highly satisfactory route to arylated alkenes, although these compounds are often readily accessible via a wide range of more conventional reactions including carbonyl olefinations.

TABLE 1. Aryl–Aryl Coupling (cf. Sect. III.2.5)

Catalyst Additive Yield (%) Reference

ArX

ArM

Name

n C

 

[1]

 

 

 

[2]

 

 

 

 

[3]

 

[4]

 

 

[5]

 

 

 

 

78

 

 

 

 

4049

 

 

 

68

 

5560

 

 

50

 

 

 

 

 

 

 

 

3

 

 

 

 

DIBAH

 

 

CsF

 

 

3

 

 

 

 

 

 

 

 

 

Na

 

 

 

 

 

 

 

 

Na

 

 

 

 

 

 

 

 

 

CO

 

 

 

 

 

 

 

 

 

 

CO

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

)

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

3

 

 

 

 

3

 

3

 

 

3

 

 

 

 

 

 

 

 

 

 

 

Pd(PPh

 

 

 

 

 

 

 

4

 

 

 

4

 

 

 

 

 

 

4

 

 

4

 

 

 

 

)

 

 

 

)

 

 

 

 

 

 

)

 

 

)

 

 

 

 

 

Pd(PPh

 

Pd(PPh

 

 

 

Cl

 

Pd(PPh

 

 

 

Pd(PPh

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OBn

 

O

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OTf

3

 

 

N

H

 

 

 

 

 

 

 

 

 

 

 

 

 

Boc

 

 

CF

 

 

MOMO

 

 

 

 

Br

Br

 

O

 

MeO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

I

 

O

 

 

 

 

 

 

 

NO

ZnCl

B(OH) CHO

 

 

ZnCl

OMOM

2

 

 

 

B(OH)BnO

 

 

 

 

O O

 

 

 

OHC

 

 

 

B(OH)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xenalepin

 

ungerimine hippadine

 

magnolol

 

5-methylchrysene

 

 

 

biphenomycinA

 

 

 

 

14

 

 

 

16

 

 

 

 

18

 

19

 

 

23

 

 

 

 

 

 

 

H

 

 

OH

OH

2

 

 

 

 

CO

 

2

 

 

 

 

 

 

OH

 

 

H N

NH

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H N

O

 

HO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

2

 

 

Me

 

 

 

 

 

 

 

 

 

OH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HO

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OH

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F

5-methylchrysene biphenomycin A

ungerimine hippadine magnolol

xenalepin

866

 

[6]

[7]

 

[8]

 

 

 

[8]

 

[9]

 

 

 

 

 

79

31

 

6585

 

 

53

 

81

 

 

 

 

 

DIBAH

LiCl CuBr BHT

 

3

 

 

 

 

 

K

BHT

 

 

 

NaHCO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

2

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

)

)

 

 

 

 

 

 

 

 

)

 

 

 

 

 

3

3

 

3

 

 

3

 

 

 

 

 

 

Pd(PPh

Pd(PPh

 

 

 

 

Pd(dppf

 

 

 

 

 

 

 

 

 

 

 

4

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

)

 

 

 

)

 

 

 

 

 

 

 

 

Cl

Cl

 

Pd(PPh

 

 

Pd(PPh

 

Cl

 

 

 

 

 

2

2

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OBnI

 

 

S S

N Bn O MOM

OBn

N

OBn I

OBn

N

OBn I

IO

O N

OMe

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Br

 

Bn

 

 

Bn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MeO

 

ZnCl

 

 

 

O

 

 

 

 

BnO

O

 

biphenomycinB

(cf.below)

23

 

3

 

 

OMeOMOM SnBu

 

 

Me

 

 

dioncophylline (cf.below)

23

 

MOMO OMe

 

 

 

Me

 

 

2

 

 

 

B(OH)

korupensamineA

korupensamineB (cf.[8])

23

 

 

MOMOOMe

 

Me ZnCl

OBnOMe

OTIPS

O

 

 

 

 

 

 

O

 

 

 

korupensamineA

 

 

B

 

 

 

(cf.[9])

 

 

 

 

23

 

 

 

[10]

[11]

(Continued)

15

 

 

 

PPh

 

LiCl

CuBr

3

 

 

 

2

 

 

 

)

 

 

 

3

 

 

 

Pd(PPh

 

 

 

2

 

 

 

Cl

 

 

 

OBn

 

 

OBn

 

 

Br

 

 

 

N

 

Bn

 

 

 

PrOMeiO

 

Me SnBu

 

3

korupensamineA

 

 

korupensamineB (cf.[10])

23

 

 

867

TABLE 1. (Continued )

Reference

 

[12]

 

[12]

 

 

 

Yield(%)

 

100

 

68

 

 

 

Additive

 

Na

Na

 

 

 

 

3

 

3

 

 

 

 

 

CO

CO

 

 

 

 

2

 

2

 

 

 

Catalyst

 

Pd(PPh

Pd(PPh

 

 

 

 

4

 

4

 

 

 

 

 

)

 

)

 

 

 

 

 

3

 

3

 

 

 

 

 

 

OMe

 

Br

 

CHO

ArX

OMe

 

CHO

 

 

 

 

MeO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Br

 

MsO

 

 

 

 

OTBS

 

 

 

 

ArM

 

B(OH)

OBn

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

TBSO

(HO)

 

 

Name

 

terprenin

 

 

 

 

 

n

 

25

 

 

 

 

 

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[12]

[3]

70

37

3

DIBAH

Na

CO

 

2

 

3

4

)

(dba)

3

Pd

Pd(PPh

2

 

OMe

I

 

OH

 

 

Br

 

MeO

 

 

 

 

2

 

 

 

 

B(OH)

 

 

O

 

TBSO

 

 

B

 

 

 

 

 

 

 

 

 

 

 

 

(HO)

 

 

 

2

 

2 ) 3 Pd(PPh 2 Cl

MOMO

I

OMe

 

 

ZnCl OMOM

O

 

 

MOMO

 

 

()-monoterpenyl

 

magnolol

28

 

 

 

 

OH

 

 

 

 

 

()-monoterpenyl-

 

 

 

 

 

 

 

 

 

OH

 

magnolol

 

 

 

 

O

 

 

OH

 

 

 

 

 

 

 

 

 

 

OMe

 

 

 

 

 

 

 

MeO OH

 

 

terprenin

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

 

NH

OHMe OH

 

 

dioncophylline

 

 

 

 

 

 

 

OMe

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

OH

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

CO

 

OOH

 

NH

B

 

 

 

H NN

 

 

biphenomycin

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

H

 

 

 

 

 

 

 

HO

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

868

 

[13]

 

 

[14]

 

 

 

 

 

 

[15]

 

 

 

 

 

85

 

 

74

 

 

 

 

 

 

53

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

40

 

 

 

 

K

 

2

 

 

 

 

 

 

3

 

 

 

 

 

Ba(OH)

 

 

 

 

 

 

NaHCO

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

4

 

 

 

 

 

 

4

 

 

 

 

)

 

 

)

 

 

 

 

 

 

)

 

 

 

 

 

3

 

 

3

 

 

 

 

 

 

3

 

 

 

 

 

 

Pd(PPh

 

 

 

3

 

 

 

 

 

Pd(PPh

 

OCH

 

 

 

 

CH

 

Pd(PPh

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OAc

 

 

 

 

OTf

OBn

 

 

 

 

 

OBn

OMe

O

 

OTf

 

 

 

OOAc CH

 

 

 

 

 

I

 

 

 

 

I

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

MeO

 

 

 

 

 

 

 

 

 

Bn

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

B(OH)

 

 

 

 

PrOMeiO

OBn Bn

 

OBn

2

OMeMOMO

 

 

 

 

 

Me B(OH)

 

 

 

 

 

B(OH)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

michellamineA

michellamineB

 

 

 

 

 

 

 

 

 

 

 

 

 

michellamines

 

michellamineA

michellamineB

 

 

 

 

46

 

 

46

 

 

 

 

 

 

46

 

 

 

 

 

 

OMe

 

 

Me

Me

NH

Me

michellamineB

OHMe

M OH

 

 

P

 

 

OH

 

 

 

 

 

OMeOH

HO

 

 

HN

OH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

Me

 

 

 

 

 

 

 

 

 

 

OMe

 

 

Me

Me

NH

Me

michellamineA

OHMe

P OH

 

 

P

 

 

OH

 

 

 

 

 

OHOMe

HO

 

 

HN

OH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

Me

 

 

 

 

 

 

 

 

(Continued )

869

TABLE 1. (Continued )

Catalyst Additive Yield (%) Reference

ArX

ArM

Name

n C

 

[16][19]

 

 

 

84

 

 

 

 

3

 

 

 

 

 

 

CO

 

 

 

2

 

 

 

 

 

 

Na

 

 

 

4

 

 

 

 

)

 

 

 

 

3

 

 

 

 

 

 

Pd(PPh

 

 

 

 

NHBoc

 

 

OCH

 

 

 

 

3

O

 

CO

 

 

I

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

H

 

 

 

O BOH

3

 

OCH

 

 

 

 

 

H

 

BnO

 

 

 

 

 

 

CO

 

 

 

 

3

 

 

vancomycin aglycon

(cf.[19])

53

 

 

 

 

[20][23]

 

 

 

 

 

 

 

[24]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

88

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

tolyl)

2

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

(o-

CO

 

 

 

 

 

 

 

 

 

 

 

Na

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

(dba)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

Pd

 

 

 

 

 

 

OMe

OH

 

 

 

 

 

NHBoc

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H N

 

O

 

 

OMe

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

N H

 

 

Br

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MeO

2

 

 

 

 

aboveas

 

 

 

 

 

NHcBz

B(OH)

 

 

OCH

 

 

 

 

 

 

 

 

 

 

 

 

 

3

same

 

 

 

 

 

 

 

MEMO

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CO

 

 

 

 

 

 

 

 

 

 

 

 

 

3

vancomycin aglycon

(cf.[19])

 

 

 

 

 

 

vancomycin

aglycon

(cf.[24])

53

 

 

 

 

 

 

 

53

 

 

 

 

 

 

870

III.2.18 SYNTHESIS OF NATURAL PRODUCTS VIA CROSS-COUPLING

871

At present, Mg, Zn, B, Al, Sn, and Zr represent the six widely used metals, although Cu and Si have also been shown to be very promising. In more demanding cases where some of the above-mentioned metals are compared, Zn has often been shown to be superior to the others in terms of reactivity, product yield, and stereoselectivity. However, the ability of B, Al, and Zr as well as Zn to participate in facile and stereoselective hydrometallation and carbometallation makes B, Al, and Zr viable and attractive alternatives to Zn. It should also be recalled that the Pd-catalyzed coupling reactions of alkenylalanes and alkenylzirconiums can often be significantly accelerated by the addition of Zn salts (Sect. III.2.6).

Although alkenylstannanes are often somewhat less readily available than those containing B, Al, or Zr, they have nonetheless been very widely used. In fact, they may have been the most widely used alkenylmetals. However, some of the critical issues associated with them, such as their general toxicity, difficulty in the complete removal of toxic tin-containing by-products, and their lower and often inferior reactivity in more demanding cases relative to Zn and B (Sect. III.2.6), must not be overlooked. Despite these critical shortcomings, Pd-catalyzed alkenyl–alkenyl coupling using alkenylstannanes has widely been employed, especially in the synthesis of an impressive array of complex natural products including ( )-amijtrienol,[25] leinamycin,[26] ( )-8,15-diisocyano-11(20)- amphilectene,[27],[28] ( )-macrolactin E,[29] ( )-macrolactin A,[29],[30] ( )-mycotrienol,[31] rapamycin,[32] – [35] and saglifehrin A.[36] As satisfactory as the results reported in these syntheses are, data comparing various available metal countercations are very scarce at best. In view of the above-mentioned problems and difficulties associated with Sn, its comparison with some others, such as Zn, B, Al, Zr, and even Si, appears to be desirable.

Some detailed aspects of the syntheses of the following compounds are presented in Sect. III.2.6. The scheme numbers indicated in parentheses are those in Sect. III.2.6: methyl dimorphecolate (Scheme 46), xerulin (Scheme 48), papulacandin D (Scheme 49), vitamin A (Scheme 60), - and -carotene (Schemes 61 and 62), vitamin D (Scheme 65), reveromycin B (Scheme 67), and nakienone A (Scheme 70). In this section, attempts have been made to catalogue most of the currently known examples of the synthesis of natural products via Pd-catalyzed alkenyl–aryl or aryl–alkenyl coupling (Table 2) and alkenyl–alkenyl coupling (Table 3).

D. SYNTHESIS OF HETEROAROMATIC NATURAL PRODUCTS

VIA Pd-CATALYZED CROSS-COUPLING

The construction of heteroaromatic compounds via Pd-catalyzed cross-coupling reactions is discussed in detail in Sect. III.2.7. Among all of the available methods, the use of Pd–Zn and Pd–B cross-coupling in the synthesis of natural products is particularly noteworthy. Some of the representative examples of natural product syntheses are shown in Table 4.

E. SYNTHESIS OF NATURAL PRODUCTS VIA

Pd-CATALYZED ALKYNYLATION

Pd-catalyzed alkyne cross-coupling has become one of the most satisfactory methods for the synthesis of alkynes. As discussed in Sect. III.2.8, there are two related but discrete protocols, that is, Sonogashira coupling, which does not involve formation of alkynylmetals as preformed and discrete reagents (Sect. III.2.8.1), and the general

TABLE 2. Aryl–Alkenyl and Alkenyl–Aryl Cross-Coupling (cf. Sect. III.2.6)

Additive Yield (%) Reference

Catalyst

RX

RM

Name

n C

[37]

68

4 PO 3 K

4 ) 3 Pd(PPh

TfO

B

13 ibuprofen

[37]

[37]

73

75

4

4

PO

PO

3

3

K

K

4

4

)

)

3

3

Pd(PPh

Pd(PPh

OMe

TfO

Br

O

 

B

B

14 naproxen

 

[38]

 

[39]

 

54

 

76

 

 

 

 

 

3

 

 

 

 

 

 

P(OEt)

 

4

 

 

 

 

)

 

 

 

 

3

 

 

 

 

 

polymer-Pd(PPh

 

2

 

 

 

 

((allyl)PdCl)

 

3

 

 

 

 

 

SnBu

 

OMe

 

 

 

 

 

 

 

 

 

 

 

 

I

O

 

O

 

OMe

 

 

 

 

O

 

I

 

 

 

 

 

 

 

MEM O

 

 

 

MEMO

O

 

 

 

 

 

(S)-zearalenone

 

 

nitidine

 

18

 

21

 

 

 

O

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

nitidine

 

 

 

 

 

 

 

 

 

 

 

N

NF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MeO

 

 

MeO

 

Bu

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

OH O Me

 

 

O

 

 

 

(S)-zearalenone

OMe

 

 

 

 

 

 

 

 

HO

 

 

 

 

 

 

 

 

 

MeO

 

 

COOH

 

 

 

 

C

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

naproxen

OMe

Si(EtO)Me

 

 

 

 

 

 

 

MeO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

COOH

ibuprofen

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

872

Соседние файлы в папке Negishi E. 2002 Handbook of organopalladium chemistry for organic synthesis