

IV.2.5 CARBOPALLADATION OF ALKYNES: TRAPPING WITH NUCLEOPHILES |
1355 |
|||||||
|
Li+ |
|
|
|
|
|
NCOPh |
|
|
− |
+ |
NCOPh |
Pd(OAc)2 |
|
|
|
|
|
|
|
|
|||||
|
BEt3 |
Br |
|
|
|
|
|
|
|
N |
|
THF reflux |
|
N |
|
||
|
Me |
|
|
|
|
45% Me |
|
|
|
|
|
|
|
|
NCOPh |
|
benzene, hv
N
32% Me
Scheme 49
D.iii. Trapping with Carbon Monoxide and a Nucleophile
When the Pd-catalyzed reaction of alkynes bearing proximate aryl or alkenyl halide groups is carried out in the presence of carbon monoxide, cyclizing arylor alkenylpalladation of the carbon–carbon triple bond occurs without premature incorporation of carbon monoxide (Scheme 50a), which would produce acylpalladation adducts (Scheme 50b). Subsequently, the resultant arylor vinylpalladation adducts are converted into the corresponding acylpalladiums that in turn can be trapped by external (as shown in Scheme 50a) or internal nucleophiles to afford organic products incorporating a molecule of carbon monoxide. This result appears to suggest that cyclizing arylor alkenylpalladation producing a fiveor six-membered ring is strongly favored over the cyclizing acylpalladation giving rise to a five-, six-, or seven-membered ring ketone. Such behavior is in contrast to the corresponding alkene reaction proceeding preferentially through a cyclizing acylpalladation[71]–[74] (Scheme 51).
|
|
|
|
|
|
|
|
|
|
−L |
|
|
|
|
|
|
L |
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PdIL2 |
|
|
PdI(CO)L |
|
|
|
|
|
|
|
O |
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
|
0 |
(a) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
−HI, −Pd0 L2 |
PdIL2 |
||||||||
|
Pd |
L2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
I |
CO, NuH |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
(b) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
PdIL2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
O |
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
O |
|
|
|
|
|
|
|
|
|
Nu |
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
Scheme 50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
0 |
|
|
|
|
|
|
|
PdIL2 |
|
|
|
|
|
|
|
|
|||||
|
|
|
|
Pd |
L2 |
|
|
|
|
|
|
|
|
|
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
I |
|
|
CO |
|
PdIL2 |
|
|
|
|
|
|
|
|
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
products |
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
O
Scheme 51

1356 |
IV Pd-CATALYZED REACTIONS INVOLVING CARBOPALLADATION |
Examples of cyclizing aryland alkenylpalladation followed by carbonylation and trapping by external or internal nucleophiles[75]–[78] to give esters, lactones, and lactames are illustrated in Schemes 52–54. Formation of lactames has been more satisfactorily carried out with iodoenynes containing -carboxamido or -sulfonamido groups than with substrates containing -amino groups.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MeO2C |
|
||
|
|
|
|
|
|
I |
|
|
|
|
|
|
|
|
PdCl2(PPh3)2, |
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
+ CO |
+ MeOH |
|
TlOAc |
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
65 °C, 21 h |
|
|
|
|
|||||||
|
|
|
|
|
|
N |
|
|
|
(1 atm) |
|
|
|
|
N |
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
[76] |
|
|
|
|
||||
|
|
|
|
|
|
Ac |
|
|
|
|
|
|
|
|
50% |
|
Ac |
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
Scheme 52 |
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n-Bu |
|
n-Bu |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
PdCl(PPh), |
|
|
n-Bu |
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
2 |
3 2 |
|
|
|
|
|
O |
E |
|
|||||
|
|
|
|
|
|
|
|
|
|
EtN |
|
|
E |
|
|
|
CO 2i-Pr |
||||
E |
|
+ |
|
3 |
|
|
|
|
|
|
+ |
|
|
||||||||
I |
CO |
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|||||||||||
|
|
|
|
|
(1 atm)i-PrOH, 75 °C E |
|
|
|
O |
E |
OH |
||||||||||
E |
|
|
OH |
|
|
|
|||||||||||||||
|
|
|
[78] |
|
|
|
|
|
|
|
|
|
|||||||||
|
E = COMe |
|
|
|
|
|
|
|
|
|
|
|
|
66% |
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Scheme 53 |
|
|
|
|
|
|
|
|
||
|
|
n-Bu |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
PdCl2(PPh3)2, |
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
I |
+ |
CO |
Et3N |
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
t-BuMe2SiO |
|
|
|
|
|
|
|
NHAc |
(1 atm) MeOH, 65 °C, |
|
n-Bu |
||||||||||
|
|
|
|
|
|
|
|
|
|
|
36 h |
[78] |
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
n-Bu |
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
O |
|
|
|
CO2Me |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+ |
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
t-BuMe2SiO |
|
|
NH |
|
|
|
NHAc |
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
t-BuMe2SiO |
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
72% |
|
|
|
|
29% |
|
Scheme 54
E. SUMMARY
Over the last fifteen years or so the domino process involving the intermolecular and intramolecular carbopalladation of alkynes followed by trapping of the resultant
IV.2.5 CARBOPALLADATION OF ALKYNES: TRAPPING WITH NUCLEOPHILES |
1357 |
-alkenylpalladium adducts with nucleophiles has been shown to be a very versatile methodology that has provided a number of novel and selective ways to functionalize the carbon–carbon triple bond.
A number of acyclic and cyclic derivatives have been prepared. Aryl and alkenyl halides or triflates have most frequently been employed as the starter substrates. The utilization of allylic acetates has also been described. Hydrogen donors (usually formate anions), organometals, nitrogen and oxygen nucleophiles, and carbon monoxide (and an oxygen or nitrogen nucleophile) have been utilized as trapping agents. As to the acetylene component, most of this chemistry has been performed using internal alkynes, especially in the intermolecular processes. Terminal alkynes have usually been employed in reactions proceeding through intramolecular carbopalladation.
Available data provide a basic rationale in terms of stereoand regioselectivity that can be achieved, but further work in this direction, to attain a better understanding of the factors influencing the crucial carbopalladation step, may be anticipated.
The process can tolerate a wide range of important functionalities, both in the starter substrate and in the acetylenic reaction partner. This makes applications to the synthesis of complex molecules especially promising and will undoubtedly bring new opportunities for the preparation of biologically active compounds.
REFERENCES
[1]X. Marat, N. Monteiro, and G. Balme, Synlett, 1997, 845.
[2]I. Coudanne and G. Balme, Synlett, 1998, 998.
[3]S. Cacchi, G. Fabrizi, and L. Moro, Tetrahedron Lett., 1998, 39, 5101.
[4]S. Cacchi, G. Fabrizi, and L. Moro, Synlett, 1998, 741.
[5]N. Monteiro and G. Balme, Synlett, 1998, 746.
[6]N. Monteiro, A. Arnold, and G. Balme, Synlett, 1998, 1111.
[7]S. Cacchi, G. Fabrizi, and P. Pace, J. Org. Chem., 1998, 63, 1001.
[8]S. Cacchi, G. Fabrizi, P. Pace, and F. Marinelli, Synlett, 1999, 620.
[9]S. Cacchi, G. Fabrizi, F. Marinelli, L. Moro, and P. Pace, Synlett, 1997, 1363.
[10]D. Zargarian and H. Alper, Organometallics, 1991, 10, 2914.
[11]G. Dyker and A. Kellner, Tetrahedron Lett., 1994, 35, 7633.
[12]P. de Vaal and A. Dedieu, J. Organomet. Chem., 1994, 478, 121.
[13]R. A. Gibbs, U. Krishnan, J. M. Dolence, and C. D. Poulter, J. Org. Chem., 1995, 60, 7821.
[14]J. Ji, Z. Wang, and X. Lu, Organometallics, 1996, 15, 2821.
[15]S. Cacchi, G. Fabrizi, F. Marinelli, L. Moro, and P. Pace, Tetrahedron, 1996, 52, 10225.
[16]A. Arcadi, S. Cacchi, G. Fabrizi, F. Marinelli, and P. Pace, Eur. J. Org. Chem., 1999, 3305.
[17]A. Arcadi, S. Cacchi, and F. Marinelli, Tetrahedron Lett., 1986, 27, 6397.
[18]F. Maassarani, M. Pfeffer, and G. Le Borgne, Organometallics, 1987, 6, 2043.
[19]F. Maassarani, M. Pfeffer, and G. Le Borgne, Organometallics, 1987, 6, 2029.
[20]N. Beydoun and M. Pfeffer, Synthesis, 1990, 729.
[21]R. C. Larock, E. K. Yum, M. J. Doty, and K. K. C. Sham, J. Org. Chem., 1995, 60, 3270.
[22]R. C. Larock, M. J. Doty, Q. Tian, and J. M. Zenner, J. Org. Chem., 1997, 62, 7536.
[23]R. C. Larock, M. J. Doty, and S. Cacchi, J. Org. Chem., 1993, 58, 4579.
[24]R. C. Larock and Q. Tian, J. Org. Chem., 1998, 63, 2002.
1358 |
IV Pd-CATALYZED REACTIONS INVOLVING CARBOPALLADATION |
[25]R. C. Larock, X. Han, and M. J. Doty, Tetrahedron Lett., 1998, 39, 5713.
[26]R. C. Larock, E. K. Yum, and M. D. Refvik, J. Org. Chem., 1998, 63, 7652.
[27]C. Chen, D. R. Lieberman, R. D. Larsen, R. A. Reamer, T. R. Verhoeven, and P. J. Reider,
Tetrahedron Lett., 1994, 35, 6981.
[28]C.-Y. Chen, D. R. Lieberman, L. J. Street, A. R. Guiblin, R. D. Larsen, and T. R. Verhoeven,
Synth. Commun., 1996, 26, 1977.
[29]H.-C. Zang, K. K. Brumfield, and B. E. Maryanoff, Tetrahedron Lett., 1997, 38, 2439.
[30]T. Jeschke, D. Wensbo, U. Annby, S. Gronowitz, and L. A. Cohen, Tetrahedron Lett., 1993, 34, 6471.
[31]D. Wensbo, A. Eriksson, T. Jeschke, U. Annby, S. Gronowitz, and L. A. Cohen, Tetrahedron Lett., 1993, 34, 2823.
[32]S. S. Park, J.-K. Choi, E. K. Yum, and D.-C. Ha, Tetrahedron Lett., 1998, 39, 627.
[33]F. Ujjainwalla and D. Warner, Tetrahedron Lett., 1998, 39, 5355.
[34]A. Arcadi, S. Cacchi, and F. Marinelli, Tetrahedron, 1985, 41, 5121.
[35]A. Arcadi, S. Cacchi, S. Ianelli, F. Marinelli, and M. Nardelli, Gazz. Chim. Ital., 1986, 116, 725.
[36]A. Arcadi, E. Bernocchi, A. Burini, S. Cacchi, F. Marinelli, and B. Pietroni, Tetrahedron, 1988, 44, 481.
[37]A. Arcadi, E. Bernocchi, A. Burini, S. Cacchi, F. Marinelli, and B. Pietroni, Tetrahedron Lett., 1989, 30, 3465.
[38]L. A. Hay, T. M. Koenig, F. O. Ginah, J. D. Copp, and D. Mitchell, J. Org Chem., 1998, 63, 5050.
[39]S. Cacchi, M. Felici, and B. Pietroni, Tetrahedron Lett., 1984, 25, 3137.
[40]S. Cacchi, G. Fabrizi, L. Moro, and P. Pace, Synlett, 1997, 1367.
[41]M. Moreno-Manas, M. Perez, and R. Pleixats, Tetrahedron Lett., 1996, 37, 7449.
[42]A. Amorese, A. Arcadi, E. Bernocchi, S. Cacchi, S. Cerrini, W. Fedeli, and G. Ortar, Tetrahedron, 1989, 45, 813.
[43]A. Arcadi, S. Cacchi, G. Fabrizi, F. Marinelli, and P. Pace, Tetrahedron, 1996, 52, 6983.
[44]A. Arcadi, S. Cacchi, G. Fabrizi, F. Marinelli, and P. Pace, Synlett, 1996, 568.
[45]S. Cacchi and A. Arcadi, J. Org. Chem., 1983, 48, 4236.
[46]S. Cacchi, F. La Torre, and G. Palmieri, J. Organomet. Chem., 1984, 268, C48.
[47]S. Cacchi and G. Palmieri, Synthesis, 1984, 575.
[48]A. Arcadi, S. Cacchi, and F. Marinelli, J. Organomet. Chem., 1986, 312, C27.
[49]G. Wu, A. l. Rheingold, and R. F. Heck, Organometallics, 1987, 6, 2386.
[50]K. R. Roesch and R. C. Larock, J. Org. Chem., 1998, 63, 5306.
[51]W. Tao, L. J. Silverberg, A. L. Rheingold, and R. F. Heck, Organometallics, 1989, 8, 2550.
[52]R. C. Larock, M. J. Doty, and X. Han, Tetrahedron Lett., 1998, 39, 5143.
[53]A. Kojima, T. Takemoto, M. Sodeoka, and M. Shibasaki, J. Org. Chem., 1996, 61, 4876.
[54]C. Copéret, T. Sugihara, G. Wu, I. Shimoyama, and E. Negishi, J. Am. Chem. Soc., 1995, 117, 3422.
[55]R. Grigg, V. Loganathan, V. Sridharan, P. Stevenson, S. Sukirthalingam, and T. Worakun,
Tetrahedron, 1996, 52, 11479.
[56]L. F. Tietze and R. Schimpf, Chem. Ber., 1994, 127, 2235.
[57]B. Burns, R. Grigg, V. Sridharan, and T. Worakun, Tetrahedron Lett., 1988, 29, 4325.
[58]R. Grigg, S. Sukirthalingam, and V. Sridharan, Tetrahedron Lett., 1991, 32, 2545.
[59]H. McAlonan, D. Montgomery, and P. J. Stevenson, Tetrahedron Lett., 1996, 37, 7151.
IV.2.5 CARBOPALLADATION OF ALKYNES: TRAPPING WITH NUCLEOPHILES |
1359 |
[60]H. Finch, N. A. Pegg, and B. Evans, Tetrahedron Lett., 1993, 34, 8353.
[61]B. Burns, R. Grigg, V. Sridharan, P. Stevenson, S. Sukirthalingam, and T. Worakun, Tetrahedron Lett., 1989, 30, 1135.
[62]B. Burns, R. Grigg, P. Ratananukul, V. Sridharan, P. Stevenson, S. Sukirthalingam, and T. Worakun, Tetrahedron Lett., 1988, 29, 5565.
[63]R. T. Wang, F. L. Chou, and F. T. Luo, J. Org. Chem., 1990, 55, 4846.
[64]F. T. Luo and R. T. Wang, Heterocycles, 1990, 31, 2181.
[65]F. T. Luo and R. T. Wang, Heterocycles, 1991, 32, 2365.
[66]S. Torii, H. Okumoto, T. Tadokoro, A. Nishimura, and A. Rashid, Tetrahedron Lett., 1993, 34, 2139.
[67]J. M. Nuss, B. H. Levine, R. A. Rennels, and M. M. Heravi, Tetrahedron Lett., 1991, 32, 5243.
[68]J. M. Nuss, R. A. Rennels, and B. H. Levine, J. Am. Chem. Soc., 1993, 115, 6991.
[69]E. Negishi, Y. Noda, F. Lamaty, and E. J. Vawter, Tetrahedron Lett., 1990, 31, 4393.
[70]M. Ishikura, J. Chem. Soc. Chem. Commun., 1995, 409.
[71]E. Negishi and J. A. Miller, J. Am. Chem. Soc., 1983, 105, 6761.
[72]J. M. Tour and E. Negishi, J. Am. Chem. Soc., 1985, 107, 8289.
[73]E. Negishi, H. Sawada, J. M. Tour, and Y. Wei, J. Org. Chem., 1988, 53, 913.
[74]Y. Zhang, B. O’Connor, and E. Negishi, J. Org. Chem., 1988, 53, 5588.
[75]Y. Zhang and E. Negishi, J. Am. Chem. Soc., 1989, 111, 3454.
[76]R. Grigg, P. Kennewell, and A. J. Teasdale, Tetrahedron Lett., 1992, 33, 7789.
[77]T. Sugihara, C. Copèret, Z. Owczarczyk, L. S. Harring, and E. Negishi, J. Am. Chem. Soc., 1994, 116, 7923.
[78]C. Copéret, S. Ma, T. Sugihara, and E. Negishi, Tetrahedron, 1996, 52, 11529.