Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
26
Добавлен:
15.08.2013
Размер:
391.44 Кб
Скачать
41,[68]

III.2.17.2 SYNTHESIS OF CONJUGATED POLYMERS FOR MATERIALS SCIENCE

835

O O

OO

O O

O O

O O

O OO O

O

O

n

O

35

O

O 5

Chart I b (Continued)

Amphiphile 36 forms transferrable Langmuir monolayers at the air/water interface with the backbones arranged parallel to the surface and the EOE chains dipping into the water phase. This finding was interpreted as evidence for the unusual ability of amphiphilically equipped PPPs to segregate lengthwise (referring to the backbone) in polar and unpolar domains.[60]

Group (c) Polymers. PPP polyelectrolytes 37,[31] 38,[61]–[63] 39[64]–[66] 40,[67] 41,[68]

42,[69],[70] 43,[71] 44,[71] 45,[71] and 46[71],[72] were prepared mainly for three reasons. First to show that SPC can be run in water, which broadens the applicability of this method considerably; second to construct blue-emitting EL devices utilizing the supramolecular ordering effects of charged macromolecules; and third, to investigate the formation of hierarchical structures in both solution and solid state. Wallow and Novak did the decisive experiment to prove the compatibility of SPC with an entirely aqueous medium.[31] The usage of dibromobiphenyl monomer bearing two carboxylic acid functions and a watersoluble Pd catalyst precursor with monosulfonated triphenylphosphine ligands together with a biphenyl bisboronic acid ester gave indeed polymer 37,[31] which, because of its decoration with the two acid functions, turned out to be soluble in dilute aqueous base. Similar to some of the group 1 polymers, PPPs 38,[60]–[63] and 42[69],[70] were

836

III Pd-CATALYZED CROSS-COUPLING

O

O

 

 

 

 

 

 

 

O

 

O

 

O

O

O

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

36

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

O

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

O

 

 

 

O

 

 

 

O

O

 

 

 

O

 

 

 

O

 

 

 

O

O

 

 

 

O

 

 

O

 

 

 

O

 

Chart I b

 

 

 

 

investigated for their EL behavior. EL devices were prepared by spin-coating a solution of saponificated 38 onto an indium–tin oxide (ITO)-covered glass substrate. ITO and aluminum were used as hole-injecting and electron-injecting electrodes, respectively. Intensive blue EL emission could be observed already at about 4 V if sodium counterions were used. Unfortunately, the lifetimes of the devices under operation were between 12 and 24 h, which is significantly too short for any commercial application. Blue emissions were also observed for polymers 41[68] and 42.[69],[70] LEDs constructed with them by both layer-by-layer electrostatic deposition and hybrid ink jet printing methods also showed some decline of initial properties.

For saponificated polymer 39[66] a model was developed to describe how rigid-rod polyelectrolytes aggregate in water. An analysis of the small-angle X-ray patterns of aqueous solutions of the fully anionic 39 reveals the formation of cylindrical micelles with a diameter of d 3.1 nm and a radial aggregation number of 11 independent of

III.2.17.2 SYNTHESIS OF CONJUGATED POLYMERS FOR MATERIALS SCIENCE

837

(c)

CO2H

 

R1

R2

38

CO2H

 

 

 

 

 

 

37

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CO2H

SO3R3

 

 

 

 

 

 

 

 

 

 

R1

 

 

 

 

SO3R3

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R2

 

 

 

 

 

 

 

 

 

 

R1

 

 

 

 

 

 

 

 

39

 

SO3R3

 

 

 

 

 

 

 

 

 

 

 

= H, CH3, C6H13

 

 

 

 

 

 

 

 

R2

= H, C

12

H

25

, C H

13

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

R3

= p-Tol, 3,5-(di-t-butyl) benzene, Na

SO3Na

N+Br

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

(CH2)6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(H2C)6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

40

 

 

 

 

 

 

 

41

 

 

 

 

 

 

 

 

 

 

 

 

42

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BrN+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SO3Na

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x = 1,2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CO2H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

N

 

 

I

 

 

 

 

 

I

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(CH2)6I

 

 

 

 

 

 

 

 

 

(CH2)6

 

 

 

 

 

(CH2)6

 

 

 

 

 

(CH2)6

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(CH2)6I

 

 

 

 

 

(H2C)6

 

 

 

 

 

 

 

 

 

 

(CH2)6

 

 

 

(CH2)6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

I

 

N

 

 

I

 

 

 

N

I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

43

 

 

 

 

 

44

 

 

 

 

 

 

 

 

 

45

 

 

46

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chart I c (Continued)

838

III Pd-CATALYZED CROSS-COUPLING

concentration. In these micelles, all PPP backbones lie parallel to one another on the surface of a cylinder with the sulfonate groups pointing outward and the unpolar dodecyl chains inward. In salt-free solutions these micelles do not deaggregate into single polymer molecules even at concentrations as low as c 0.001 g/L. From static and dynamic light scattering it was concluded that above a critical concentration the micelles form lyotropic objects, which consist of approximately 130 micelles and are oblate spheroids with dimensions of 400 and 600 nm. Cylindrical aggregates in solution were also found for polymer 46, which in the solid-state aggregates in columnar mesomorphous structures. Polymer 43,[71] though not a polyelectrolyte, is mentioned here, because it is an important intermediate on the way from 13 to PPPs 4446.[69] Polymer 44 is exceptional as it carries four charges at every r.u.

Group (d) Polymers. Ladder polymers have been of long-standing interest for their thermal, electrical, and optical properties.[73],[74] One of two basically possible routes into this class of polymers starts from a single-stranded polymer, which is designed to allow a second independent strand to be made by some subsequent chemical modification. Polymers 47,[75]–[82] 51,[83],[84] and 53[85],[86] are examples for this. They carry functional groups with which ring closures between two consecutive benzene rings were achieved to give ladders 48, 52, and 54, respectively. The conversions of these reactions can be driven to approximately 90–95%. Polymers 49, 50, and 55[87] were obtained accordingly. Polymers 48 and 49[88] have excellent EL characteristics but have not yet reached the level adequate for technical production.

Group (e) and (f) Polymers. Development of enantioselective polymer-based catalysts is important in the efficient production of optically pure, chiral organic compounds including drug molecules. The major advantage of polymer-based catalysts is the ease of recovery and their reuseability. Applications in flow reactors may also be feasible. Polymers 5 658[89] – [96] are good examples here. Complexed with AlMe3 or Me2AlCl, they were used to catalyze hetero-Diels–Alder reactions in a highly enantioselective manner. Dendronized polymers, which are polymers with dendritic side chains, have gained some importance in research directed toward molecular objects on the nanometer scale. For polymers like 59[97],[98] and 60[20],[99] it was proved that, because of the enormous steric congestion at each repeat unit, they are exceptionally rigid and attain a cylindrical shape in solution and when adsorbed on surfaces. This matter has been treated comprehensively in the literature.[100] From a synthetic point of view, polymer 60 is rather amazing. It was obtained in high yield and very high molar mass, which proves that SPC proceeds with conversions above 98% even in cases where monomers are sterically enormously loaded. The complex mechanistic cycle of SPC does not seem to be influenced by this detrimentally.

Group (g) Polymers. Though poly(arylene vinylene)s and poly(arylene ethinylene)s are normally prepared by other reactions (see below), SPC has also been applied to a few representatives of these classes of polymers. Besides polymers 6163,[39],[101] the already mentioned polymer 57 also formally belongs to this group. Polymer 62 was used to compare some of its EL and PL characteristics with those of the formally identical polymer prepared by Heck polycondensation (Sect. C). Differences were actually observed and attributed to some defective connections occurring during the Heck procedure.

III.2.17.2

SYNTHESIS OF CONJUGATED POLYMERS FOR MATERIALS SCIENCE

839

(d)

 

R1

H R2

 

R1

COR2

 

 

 

 

R1

H13C6

(BOC)HN

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R1 = C6H13

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COR2

 

 

 

 

 

 

 

 

 

H

 

R

2

R

1

 

 

 

R2 = 1,4-C6H4-R3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

47

 

 

 

 

 

 

 

 

 

 

 

R3 = CnH2n+1, OCnH2n+1

 

 

 

 

48

 

 

 

 

 

 

C6H13

 

 

R1

 

 

 

 

 

 

H

R'

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

49

 

 

H

 

 

R

 

 

 

 

 

 

 

y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(CH2)10

 

 

 

 

R

(CH2)10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

O

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

50

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

O

 

 

 

 

 

N

 

 

 

 

R

 

 

 

 

 

 

NH(BOC)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

51 R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

52

 

 

 

 

 

 

 

 

R = C4H9, C12H25, p-(C6H5)-C8H17

Chart I d (Continued)

Group (h) Polymers. Most polymers of this group did not gain importance as materials for an application but should be noted for synthetic considerations. Polymers 6466[102] show that SPC can be applied to monomers containing functional groups between two aromatic units. The dendritic macromolecule 67[103],[104] proves that besides the conventional bifunctional SPC monomers the trifunctional 3,5-dibromo benzeneboronic acid can also be employed. Whereas unprotected pyrrole cannot be subjected to SPC, the tert- butyloxycarbonyl-protected pyrrole can. The corresponding 2,5-dibromopyrrole derivative together with 2,5-didodecylbenzene bisboronic acid furnishes polymer 68[105] whose thermal treatment gives the polyarylene copolymer 69 with one or three pyrrolic units per r.u., which otherwise is not accessible. Polymer 70[54],[55] is a novel rigid-rod type poly-imid, polymer 71[106] can be used for retro-Diels–Alder chemistry to access unusual poly(arylene ethinylene)s, and, finally, the reduction of polymer 72[107] yields the radical anion 73, which was investigated as a model for one-dimensional polaronic ferromagnetism.

840

III Pd-CATALYZED CROSS-COUPLING

OR

OR

OR

 

 

 

OR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OR

 

 

 

 

 

 

 

 

 

 

 

OR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OR

OR

 

 

 

OR

 

 

 

54

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

53

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R = Alkyl

 

 

 

 

 

 

 

 

 

 

R = Alkyl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OR

 

 

 

 

 

 

 

 

 

 

 

 

 

S

X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S

55

 

 

 

 

S

 

 

 

 

 

 

 

 

 

 

 

 

Chart I d

(e)

RO OR

RO OR

 

 

 

 

n

n

n

n

RO OR

56

RO OR

 

Chart I e

B.iii. Molecular Weight Determinations, Degrees of Polymerization, Mechanistic Considerations, and Diiodo Versus Dibromo Monomers

PPPs, polyarylenes in general, and other fully conjugated polymers like poly(arylene vinylene)s and poly(arylene ethinylene)s are considered as rigidrods. Rod-type macromolecules have, for a given molar mass, a larger hydrodynamic volume than flexible ones. In practically all cases the molar masses and distributions of rigid-rod polymers are determined by gel permeation chromatrography (GPC), a method that separates according to hydrodynamic volume. Narrow samples of different molar mass PS are used for the calibration. A GPC molar mass of a PPP derivative of 20,000 means nothing more than that this sample has the same hydrodynamic volume as a sample of PS with the actual molar mass of 20,000. With the above argument, the actual molar mass of the PPP will be

RO OR

RO OR

57

(Continued)

ROOR

ChartIe

RO OR

841

842

III Pd-CATALYZED CROSS-COUPLING

 

 

 

 

 

HO OH

OR

RO

OR

 

RO

 

 

OR RO

 

 

 

 

 

 

 

RO

OR

RO

OR RO

OR

HO OH

 

 

 

 

HO OH

 

58

Chart I e (Continued )

(f)

 

 

 

O

 

O

 

 

O

 

 

O

 

 

O

 

O

 

O

 

 

 

 

 

O

O

 

 

 

 

 

O

 

 

 

 

 

 

 

 

O

 

O

 

 

O

 

 

O

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

C6H13

 

 

 

n

C6H13 CH3

59

Chart I f

 

 

 

 

O

 

 

 

 

 

 

 

 

 

O

 

 

O

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

O

O

 

 

 

O

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

O

 

 

 

O

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

(Continued)

O

 

 

 

O

 

 

 

n

 

 

 

 

 

 

 

O

 

 

 

 

60

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

O

O

O

 

 

 

 

 

 

ChartIf

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

O

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

O

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

O

 

 

 

 

 

 

 

 

O

O

 

 

 

 

 

 

 

843

844

III Pd-CATALYZED CROSS-COUPLING

(g)

O O

n

O O

 

 

 

 

 

 

61

 

 

 

 

 

 

 

 

 

 

 

 

R1

 

 

n

 

 

 

R1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R2

 

 

 

 

R2

62

 

 

 

63

 

 

 

 

 

 

 

 

 

R1

= R2

= 2-ethylhexyloxy

 

 

 

R1

= R2

= methoxy

 

 

 

R1

= phenyl, R2 = H

Chart I g

(h)

R

 

 

R

 

 

 

n

n

 

 

R

R

 

 

 

 

 

 

 

 

O

 

64

 

 

O

 

 

65

R

O

n

O R

66

Chart I h

Соседние файлы в папке Negishi E. 2002 Handbook of organopalladium chemistry for organic synthesis