Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
28
Добавлен:
15.08.2013
Размер:
732.58 Кб
Скачать

III.2.6 Pd-CATALYZED ALKENYL–ARYL

355

geometry.[57] However, the reaction of benzyl (Z )-3-(tri-n-butylstannyl)propenoate[101] with p-nitrophenyl triflate gives a 2 : 1 mixture of the Z and E isomers of the desired product (Scheme 18). On the other hand, the reaction of (Z )-1-propenyltributyltin and phenyl fluorosulfonate has been reported to produce exclusively (Z )- -methyl-

styrene.[48]

Stannoxanes, prepared from propargyl alcohol and 3-butyn-2-ol,[102]

are utilized

to synthesize arylated (Z )-allylic alcohols by Stille coupling.[103]

The use of nitrobenzene as solvent dramatically improves the yields in many cases (Scheme 19).

 

 

 

 

 

 

OTf

 

2% Cl2Pd(PPh3)2 HO

 

 

 

 

 

 

 

 

OH

 

 

 

 

 

 

 

 

 

DMF, LiCl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

60 °C, 18 h

 

 

 

 

 

 

 

 

 

 

HO

 

 

SnBu3

 

 

 

 

 

 

 

 

 

 

 

62%

+

 

33%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2% Cl2Pd(PPh3)2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DMF, LiCl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NO2 100 °C, 5 h

CO2Bn

 

 

 

NO2

 

 

BnO2C

 

 

SnBu3

+

 

 

 

 

 

 

 

 

 

 

 

 

 

+ (E)-isomer

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TfO

 

 

 

 

 

 

 

 

 

 

 

 

 

2:1 (47%)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 18

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

Pd(PPh3)4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PhNO2, LiCl

R

 

 

 

 

 

 

 

 

R

 

 

 

SnBu2 +

 

 

 

 

OH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

R

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

R

Yield (%)

Z /E

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

Me

89

 

96:4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

NO2

66

 

97:3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

OMe

96

 

96:4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

Me

94

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

NO2

94

 

 

 

 

 

 

 

 

 

 

 

Scheme 19

 

 

 

 

 

 

 

 

 

 

The Pd-catalyzed cross-coupling reactions of (Z )- -substituted alkenylsilanes with aryl electrophiles, such as aryl bromide,[88] aryl chloride,[83],[88] and aryl triflate,[104] have been demonstrated (Table 4). In these reactions, the presence of either two Si—F bonds or Si—Cl bonds appears to be required for successful coupling, and the addition of bases, such as TBAF and NaOH, is also necessary. In addition, when chloroarenes are used as electrophiles, trialkylphosphines, such as iPr3P, Et3P, and dcpe, must be used as effective ligands. The reaction proceeds with retention of the stereochemistry of the alkenylsilicon derivatives. More recently, a highly stereospecific cross-coupling of alkenylsilanols has been demonstrated,[84] as shown in Scheme 20. The product yields and stereoselectivities are generally high, and the (Z )-alkenyldiisopropylsilanols are superior to the

356

III Pd-CATALYZED CROSS-COUPLING

corresponding (Z )-alkenyldimethylsilanols with respect to the stereoselectivity. The major advantage over the previous methods is the mild reaction conditions (room temperature, 10–30 min).

Pd(dba)2

ArI, TBAF

Pent

 

SiMe2OH

THF, r.t.

 

 

 

 

Pent

 

Ar

 

 

 

 

 

 

 

Pd(dba)2

 

 

 

 

 

 

ArI, TBAF

 

 

Pent

 

SiiPr2OH

THF, r.t.

 

 

 

 

Pent

 

Ar

 

 

 

Ar

Time (min)

Yield (%)

Z/E

Ph

10

90

97.3:2.7

1-Naphthyl

30

85

96.7:3.3

p-MeCOC6H4

10

92

95.2:4.8

Ar

Time (min)

Yield (%)

Z/E

Ph

10

81

99.4:0.6

1-Naphthyl

30

79

97.7:2.3

p-MeCOC6H4

10

86

99.0:1.0

Scheme 20

B.iii.c. -Substituted Alkenylmetals. -Substituted alkenylmetals containing Mg and Zn can be prepared by oxidative metallation of the corresponding alkenyl halides. 2-(1,3-Butadienyl)magnesium chloride, prepared from 2-chloro-1,3-butadiene and magnesium,[105] was coupled with several aryl iodides in the presence of Pd(PPh3)4 to give 2-arylated 1,3-butadienes in fair to good yields.[106] Neither Ni(acac)2 nor Ni(pph3)4 was effective for this reaction, since either polymerization occurred or no reaction ensued. In cases where both an alkyl iodide and an aromatic iodide are present in an electrophile, the aromatic iodides preferentially reacted,[107] as exemplified by the results shown in Scheme 21.

MgCl

 

 

3% Pd(PPh3)4

Ar

ArI

THF-C6H6

+

 

 

 

 

 

 

 

 

 

 

 

 

 

[106]

 

 

 

 

 

Ar = Ph (75%), p-MeC6H4 (56%), p-MeOC6H4 (50%), 1-Naphthyl (40%)

 

 

 

 

3% Pd(PPh3)4

 

 

 

MgCl

 

 

 

THF-toluene

 

 

(CH2)3I

+ I

 

(CH2)3I

 

 

 

 

 

 

 

 

 

 

 

 

[107]

 

 

60%

 

 

 

 

 

 

 

 

 

Scheme 21

 

 

 

Trifluoroisopropenylzinc reagent is prepared in nearly quantitative yield by the direct zincation of 2-bromo-3,3,3-trifluoropropene in the presence of TMEDA. This organozinc reagent readily undergoes Negishi coupling with a wide variety of aryl halides. Various functional groups, such as Br, Ac, OMe, NO2, OAc, and CHO, are tolerated. Excellent yields are achieved in most cases. However, o-amino- and acetylamino-substituted

[111]–[114]

III.2.6 Pd-CATALYZED ALKENYL–ARYL

357

bromobenzenes fail to react with the reagent under the same conditions.[108] This zincation – cross-coupling procedure (Protocol III) has been used in the synthesis of fluorovinylsalicyclic acid derivatives[109] (Scheme 22). The zinc reagents are often generated by lithiation of the alkenyl halides followed by transmetallation with zinc halides. Some chemoselective and regioselective coupling reactions of alkenylzinc reagents, generated by a lithiation – transmetallation procedure, with o-dihaloarenes have been demonstrated, as shown in Scheme 23.[110]

 

 

X

 

CF3

 

CF3

 

 

 

 

CF3

CF3

 

 

Pd(PPh3)4

 

 

 

 

 

(CH3)2S

 

 

THF

 

 

 

 

 

 

AlBr3

ZnBr

+

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CO2Me

 

 

 

 

 

 

 

 

 

 

CO2Me

 

CO2Me

 

 

 

CO2H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OCOMe

 

 

 

 

 

 

 

 

OCOMe

 

OH

 

 

 

OH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25%

29%

 

 

 

 

 

 

 

 

 

 

 

Scheme 22

 

 

 

 

 

 

 

ZnX

I

Br

 

O

 

Pd(PPh3)4

 

 

 

Br

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

65%

 

1. t-BuLi, THF/DME

 

 

 

 

 

 

 

 

78 °C

 

 

 

 

 

 

 

 

2. ZnCl2

 

 

 

 

 

 

 

 

 

 

Br

I

 

OMe

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

 

 

 

OMe

 

 

 

 

 

 

 

 

 

 

Pd(PPh3)4

 

 

 

 

 

 

 

 

 

I

 

 

 

 

O

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

72%

 

Scheme 23

Although Markovnikov alkenylboranes have been known since 1975, their Pd-catalyzed cross-coupling had not been reported until an improved procedure for the preparation of Markovnikov alkenylboranes in pure form was recently reported.[115] In these reactions, however, the primary alkyl groups compete with the 2-alkenyl groups and produce alkylbenzenes, but iPr, sBu, and iBu virtually do not. On the other hand, when the alkenylboranes are treated first with 1 equiv of trimethylamine N-oxide, which presumably gives alkenylalkoxyborane,[116] the yields of the desired -substituted styrenes increase dramatically[117] (Scheme 24).

358 III

Pd-CATALYZED CROSS-COUPLING

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PhBr

 

 

 

 

 

 

H

R

Me3NO H

 

R

Pd(PPh3)4

H

 

R

 

 

 

 

NaOH, H2O, THF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

Ph

 

R

H

BR2

 

 

 

 

 

 

 

 

 

 

 

H

 

BR(OR)

 

 

H

 

Ph

 

 

 

 

 

 

 

 

 

 

 

R = Bu

 

96%

4%

 

 

 

 

 

 

 

 

 

R = CH2SiMe3

70%

11%

 

Scheme 24

It is noteworthy that -alkoxy- and -alkylthio-substituted vinylzinc reagents, generated by treating the corresponding organolithium reagents with zinc chloride, undergo Negishi coupling with aryl halides to produce the corresponding arylated -het- erosubstituted alkenes in high yields[118] (Scheme 25). This approach has been demonstrated repeatedly in related Stille and Suzuki coupling reactions (Sect. III.2.13.2).

 

 

 

 

5% Pd(PPh3)4

 

 

 

Z

Ar

Yield (%)

H

 

Z

 

H

 

Z

 

 

 

 

 

THF, 22

°C

 

OEt

C6H5

91

 

 

 

 

 

H

 

ZnCl2

+ ArI

 

 

 

 

 

 

OEt

p-C6H4

91

 

 

 

 

 

 

 

 

 

 

 

 

H

 

Ar

SEt

C6H5

80

Scheme 25

-Substituted alkenyltins or alkenylsilicons have not been used as often as their Zn and B counterparts. One problem associated with the use of -phenyl-substituted vinylfluorosilane with aryl iodides is the formation of a mixture of regioisomers. Their ratio depends on the nature of the substituents in the aryl iodides.[18] -Substituted alkenylzirconiums can be prepared by oxidative addition of 2-haloalkenes to zirconocene, and their subsequent Negishi-type coupling with aryl halides has been demonstrated[119] (Scheme 26).

 

 

 

 

 

PhI

 

 

Ph

 

 

 

Ph

Pd(PPh3)4

 

Ph

Cp2ZrBu2

 

ZnCl2

 

 

 

 

 

78%

 

 

 

 

ZrCp2Cl

 

 

 

 

 

 

 

 

 

 

Cl

 

 

 

 

 

 

Ph

Scheme 26

B.iv. Trisubstituted Alkenylmetals

Some representative examples of the cross-coupling of three different types of trisubstituted alkenylmetals with aryl electrophiles are shown in Table 6 and arranged in the order: , -, cis- , -, and trans- , -substituted alkenylmetals.

 

 

 

 

 

 

 

III.2.6 Pd-CATALYZED ALKENYL–ARYL

359

TABLE 6. Pd-Catalyzed Cross-Coupling of Trisubstituted Alkenylmetals with Aryl

 

Electrophiles a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Yield

 

 

 

 

ArX

 

(Selectivity)

Ref-

Alkenylmetals

 

Conditions

%

erence

 

 

 

 

 

 

 

 

 

 

β,β−Di-

 

 

 

 

 

 

 

 

 

Hex

BBr2

I

 

 

 

 

Cl2Pd(PPh3)2,

65(97)

[122]

 

 

 

 

 

 

 

 

 

 

 

 

Bu

 

 

 

 

 

MeOLi, MeOH

 

 

 

 

 

 

 

 

 

Hex

BBr2

I

 

 

 

 

Cl2Pd(PPh3)2,

 

 

 

 

 

 

 

 

73(99)

[122]

 

 

 

 

 

 

 

 

 

 

 

 

 

MeOLi, MeOH

TMS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ZnX

I

 

 

 

 

 

 

 

 

 

 

 

 

 

Pd(PPh3)4, THF

80

[99]

 

OtBu

 

 

 

 

OMe

 

 

 

 

 

 

 

 

 

SiMe2(OiPr)

I

 

 

 

 

[ClPd(π-C3H5)]2,

 

 

 

 

 

 

 

TBAF, P(OEt)3,

79(95)

[82]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THF

 

 

cis-α,β−Di

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Et

Et

Br

 

 

 

 

Pd(PPh3)4,

87(99)

[66]

BY2

 

 

 

 

 

NaOEt, EtOH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Et

I

 

 

 

Me

Pd(PPh3)4, ZnCl2

88(>97)

[18]

Et

AliBu2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

Pr

 

 

 

 

Pd(PPh3)4, THF

85(99.5)

[131]

Pr

ZnX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pr

I

 

 

 

 

 

 

 

Pr

 

 

 

 

CO2Et

Pd(PPh3)4, THF

72(>99)

[131]

 

 

 

 

ZnX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pr

I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pr

ZnX

 

 

 

 

CHO

Pd(PPh3)4, THF

50(>99)

[131]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bu

I

 

 

 

 

[ClPd(π-C3H5)]2,

90(>99)

[82]

Bu

SiMe(OEt)2

 

 

 

 

 

TBAF, P(OEt)3,

 

 

 

 

 

 

 

 

 

Bu

I

 

 

 

 

THF

 

 

 

 

 

 

 

 

 

 

Bu

ZrCp2Cl

 

 

 

 

 

Ni(PPh3)4, ZnCl2

80(>97)

[18]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bu

I

 

 

 

 

[ClPd(π-C3H5)]2,

 

 

Bu

SiMe(OEt)2

 

 

 

 

COMe

TBAF, P(OEt)3,

77(>99)

[82]

 

 

 

 

 

 

 

 

 

THF

 

 

 

 

 

CO2Me

 

 

 

OTBS

 

 

 

 

 

I

 

 

 

 

Cl2Pd(PPh3)2,

 

 

 

 

 

 

 

 

43

[137]

TBSO

SnBu3

 

 

 

 

 

ZnCl2, LiCl,

 

 

 

 

Me

dioxane

 

 

 

 

 

 

 

 

 

 

(Continued )

360

III

Pd-CATALYZED CROSS-COUPLING

 

 

 

TABLE 6. (Continued )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Yield

 

 

 

 

 

ArX

 

(Selectivity)

Ref-

 

Alkenylmetals

Conditions

%

erence

 

 

 

 

 

 

 

 

 

trans-α,β− Di

 

 

 

 

 

 

 

Me

 

TfO

Pd(PPh3)4,

 

 

 

 

 

 

 

 

 

 

B(OiPr)2

 

 

 

68

[138]

 

 

 

 

 

 

 

 

 

 

K3PO4, dioxane

 

Bu

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph

I

Pd(PPh3)4 ,

29

[124]

 

Bu

 

 

 

 

 

CsF, DMF

 

 

 

 

 

 

 

 

 

 

B

O

I

Pd(PPh3)4 ,

 

 

 

Bu

O

 

 

 

 

34

[124]

 

 

 

 

 

 

 

 

 

 

CsF, DMF

 

 

 

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aSee Table 3.

 

 

 

 

 

 

 

B.iv.a. , -Substituted Alkenylmetals. Carbometallation reactions of 1-alkynes, most notably carboalumination[40] and carbocupration,[38] collectively provide a powerful route to the synthesis of , -substituted alkenylmetals. The alkenylmetals generated in situ may be used directly for Pdor Ni-catalyzed cross-coupling with aryl electrophiles (Protocol 1). One prototypical example of the carbometallation–cross-coupling tandem process is shown in Scheme 27.[120]

 

 

 

 

 

Me3Al

 

 

 

N

 

Hex

 

H

 

 

 

 

 

Hex

 

H

Br

 

 

 

 

 

 

 

 

 

 

 

Cp2ZrCl2

 

 

 

 

 

 

 

Hex

 

 

 

H

 

 

 

 

 

 

Me

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

 

AlMe2

3% Pd(PPh3)4

 

 

 

 

 

 

 

 

 

 

 

THF, 22

°C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

82%, 99% purity

Scheme 27

In addition to the carbometallation reactions mentioned above, there are various additional methods for the synthesis of trisubstituted alkenes, as discussed below. Various , -substituted alkenylboron compounds can be prepared from 1-alkynes by a haloboration[121]–chemoselective cross-coupling tandem process similar to that shown in Scheme 9. Their subsequent reaction with iodobenzene is effected by the addition of a base to give stereodefined arylated alkenes in fair to good yields.[122] A series of 1,3-dibora-1,3-butadienes have been prepared by a zirconocene-mediated reductive cyclization of 1-alkynyl boronates using Negishi’s reagent[123] (Cp2ZrCl2 2 n-BuLi). Their cross-coupling with aryl halides proceeds to selectively replace the terminal B group giving 2-bora-1,3-butadiene derivatives[124],[125] (Scheme 28). The synthetic utility of this method is severely limited due to the restriction that the two R groups be the same.

 

 

 

 

 

 

 

III.2.6

Pd-CATALYZED ALKENYL–ARYL

361

 

 

 

 

1. Cp2ZrBu2

 

R

Pd(PPh3)4

R

 

 

 

 

O

 

ArI, THF

 

 

 

 

 

 

 

 

R

 

 

2. H+

B

CsF

Ar

 

 

 

B

 

 

 

 

 

 

 

 

 

 

R

 

 

 

R

 

 

 

 

 

 

 

 

 

O

 

 

 

B

 

 

 

B

 

 

 

 

 

 

 

 

 

 

 

 

R = n-Bu, Ar = Ph (97%), p-MeC6H4 (92%), 2-Thienyl (90%)

Scheme 28

The reaction of 2-bis(trimethylstannyl)-1-alkenes, readily available by the addition of hexamethylditin to 1-alkynes using Pd(PPh3)4 as catalyst,[126],[127] with -chloroarene chromium complexes give regioand stereospecifically the corresponding cross-coupling products in 34 – 85% yields[128] (Scheme 29). On the other hand, uncomplexed haloarenes, such as chlorobenzene or even bromobenzene, fail to undergo the desired cross-coupling. The success with the chromium complexes may be attributable to the electron-withdrawing tricarbonylchromium group, which favors the oxidative addition of aryl chlorides to Pd(0) complexes.[129]

The Pd-catalyzed reaction of (Z )-exocyclic silyldienes[130] with aryl halides has been reported to proceed with some loss of stereochemistry (5–10%)[82] (Table 6).

Cl

 

 

 

Pd(PPh3)4

H

 

 

 

 

 

Cr(CO)3

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Me3Sn)2

R

 

 

 

 

 

Me

R

 

 

 

 

 

RC

 

CH

 

 

 

SnMe3

 

 

 

 

 

 

 

 

 

 

 

Cr(CO)3

 

 

 

 

 

 

 

5% Pd(PPh3)4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SnMe3

 

THF, 70 °C

Me3Sn

 

 

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R = Ph (70%), MeOCH2 (62%), MeCH(OH) (34%), Me2C(OH) (85%)

Scheme 29

B.iv.b. cis- , -Substituted Alkenylmetals. cis- , -Substituted alkenylmetals containing B, Al, Zr, Sn, and Si can conveniently be prepared via hydrometallation of internal alkynes, and their Pd-catalyzed cross-coupling with aryl electrophiles has been investigated extensively. Some representative results are shown in Table 6. The recently reported Ti-catalyzed hydrozincation that can directly provide stereodefined alkenylzinc reagents[131] from alkynes permits a one-pot Negishi coupling with aryl halides to give arylated alkenes in good yields and in high stereoselectivity. Hydrozincation of unsymmetrically alkyl-substituted alkynes generally produces mixtures of two regioisomers in nearly 1:1 ratios, even though the presence of Ph or an Me3Si group can result in ca. 90:10 regioselectivity. Their cross-coupling with iodobenzene gives mixtures of two regioisomers also in ca. 90:10 ratio[131] (Scheme 30).

 

 

 

 

 

 

 

Cp2TiCl2

PhI

 

Ph

 

 

 

 

 

 

 

Ph

 

 

 

 

 

 

 

 

 

ZnI2-LiH, THF

Pd(PPh3)4

 

 

+

 

 

 

 

 

 

 

Ph

 

 

 

 

Pr

 

 

 

 

 

 

Ph

 

Pr

 

Ph

 

 

 

Pr

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cp2TiCl2

 

 

PhI

86% (88:12)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph

 

 

 

 

 

 

 

Ph

Me3Si

 

 

 

 

Hex

ZnI2-LiH, THF

Pd(PPh3)4

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me3Si

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hex

Me3Si

 

Hex

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

70%

(90:10)

 

 

Scheme 30

362

III Pd-CATALYZED CROSS-COUPLING

An alternative preparation of stereodefined cis- , -substituted alkenylzinc reagents involves transmetallation of the corresponding trialkenylboranes or alkenyl tellurides with diethylzinc.[132],[133] The alkenylzincs thus obtained undergo Negishi coupling with aryl iodides in good yields (Scheme 31).

Et Et

)

H 3 B

t-Bu Ph

H TeBu

 

3 Et2Zn

 

Et

Et 0.28% Pd(PPh3)4

 

 

Et

Et

 

hexanes

 

 

 

 

Et3B

 

 

 

3

 

 

 

 

 

ArI

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

ZnEt

 

 

 

H

Ar

 

dioxane

 

 

 

 

 

 

Ar = p-MeC6H4 (82%), m-BrC6H4 (87%), p-MeC6H4 (77%)

 

Et2Zn

t-Bu

 

 

Ph

 

5% Pd(PPh3)4

t-Bu

 

 

Ph

 

20 °C

 

 

 

 

p-MeC6H4I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BuTeEt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

ZnEt

 

020 °C, 1 h

H

 

 

C6H4-p-Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

72%

 

 

Scheme 31

The use of cis- , -substituted alkenylalkoxysilanes in Pd-catalyzed cross-coupling with aryl halides has been demonstrated.[82] The synthetic utility of these coupling reactions has further been demonstrated by the one-pot transformation of a homopropargyl alcohol to regioand stereodefined trisubstituted homoallyl alcohol (Protocol 1), as shown in Scheme 32.

 

 

 

 

 

Hex

2.5% [ClPd(π-C3H5)]2

Hex

 

 

 

 

 

5% P(OEt)3, PhI

Hex

 

 

[134]

 

 

 

 

 

 

 

TBAF, THF, 12 h

OH

 

 

 

 

 

 

 

OH

 

 

 

 

 

 

 

 

 

 

 

Me2Si

 

O

 

67% (>99% E)

Ph

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 32

B.iv.c. trans- , -Substituted Alkenylmetals. The accessibility of trans- , -substituted alkenylmetals is still rather limited, and only a few examples of this type of crosscoupling reactions have been reported (Table 6). Notably, trans- , -substituted alkenylboronates can be prepared by hydroboration of 1-bromo-1-alkynes followed by subsequent treatments with organolithiums and bases, a procedure similar to that for the preparation of (Z )- -substituted alkenylboron compounds.[94]–[97] The Pd-catalyzed crosscoupling reaction of the resultant organoboranes with aryl halides proceeds with complete retention of alkenyl stereochemistry to give trisubstituted alkenes[135] (Scheme 33).

 

 

 

1. HBBr2.SMe2

 

 

B(OiPr)2

 

 

 

2. iPrOH

Bu

 

BuC

 

CBr

3. RLi

C

 

C

 

 

 

 

 

 

 

4. Base

 

 

 

 

H

 

R

PhI

Pd(PPh3)4

KOH, H2O

Bu Ph

C C

H R

R = Me(85%), Bu(89%), 2-Methylpropenyl(61%), 2-Thienyl(98%)

Scheme 33

III.2.6 Pd-CATALYZED ALKENYL–ARYL

363

Alternatively, hydrozirconation of 1-alkynyldioxaborolanes with HZrCp2Cl affords 1,1-dimetalloalkenes containing both B and Zr, which can then be reacted with various electrophiles to give trans- , -substituted alkenylboronates via preferential reaction of the carbon – zirconium bond[136] as shown in Scheme 34. The subsequent Suzuki coupling with iodobenzene gives trisubstituted alkenes in good yields.

 

 

 

 

 

 

 

 

 

 

 

 

Cp2ZrHCl

H

 

 

ZrCp2Cl

Br

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CuCN

 

 

 

Bu

 

 

 

 

 

 

 

 

 

BX2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bu

 

 

BX2

THF, 25 °C

Bu

 

 

BX2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

BX2 =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B

 

 

Pd(PPh3)4

 

 

 

 

PhI

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

82%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pd(PPh3)4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Br

 

 

 

 

 

 

 

 

 

 

 

 

PhI

 

 

 

 

 

 

NaOEt, EtOH

 

 

 

 

 

 

 

 

 

 

Pd(PPh3)4

 

 

 

 

 

 

 

 

 

H

 

 

 

H

 

 

 

 

 

 

 

NaOEt, EtOH

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

84%

 

Bu

 

 

BX2

 

 

Bu

 

 

Ph

 

 

 

 

 

 

 

 

 

 

 

Bu

 

 

Ph

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 34

 

 

 

 

 

 

B.v. Tetrasubstituted Alkenylmetals

Several coupling reactions of 2-substituted cycloalkenylmetal reagents have been re- ported.[139]–[141] For example, cyclobutenylmetals, generated in situ via carbometallation of 4-halo-1-metallo-1-alkynes, are reacted with iodobenzene to give 1,2-disubstituted cyclobutenes,[139] as shown in Scheme 35.

 

 

 

M

 

R

 

M

 

 

 

 

RX

 

 

R

 

 

 

RM

 

 

 

R

 

M PdLn

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M

 

 

 

 

 

 

 

 

X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X

 

 

 

 

 

 

 

 

M = Al or Zr group

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R = allyl, R= Ph, 75%

R, R= C group, X = I, Br

 

 

 

 

 

Scheme 35

1,2-Bis(boryl)alkenes can be prepared by the Pt-catalyzed stereoselective diboration of alkynes.[142] Their two consecutive Suzuki coupling reactions have provided some polymer-bound tetrasubstituted alkenes (Scheme 36).[143] The second coupling is carried out on a solid support permitting easy separation of the undesired tetrasubstituted alkenes formed in the first coupling reaction. This approach has been applied to the parallel synthesis of tamoxifen and related derivatives.[144]

, , -Trifluorosytrenes can be prepared in good yields by Negishi coupling of perfluorovinylzinc reagents with aryl halides. A wide variety of substituents in the aryl group can be tolerated.[145]–[148] The perfluorovinylzinc reagents are prepared by either transmetallation of perfluorovinyllithium with zinc halides[145] ,[149] or direct zinc insertion into 1- iodoand 1-bromo-trifluoroethylene[146],[147] (Scheme 37).

364

III Pd-CATALYZED CROSS-COUPLING

 

 

 

 

 

X2BBX2

 

 

 

 

 

 

Pt(PPh3)4

 

R

 

 

 

 

DMF, 80 °C

R

 

 

 

R

 

 

 

 

 

X2B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X2BBX2 =

 

O

B

 

B

O

 

O

 

O

 

 

 

 

 

 

 

 

 

 

R

BX2

RX Cl2Pd(PPh3)2 3 M KOH DME, 80 °C

PHN

O

R = Ph, R= Bu (>95%), 4-tolyl (83%)

R = Et, R= 4-tolyl (85%), 2-propenyl (>95%)

 

 

 

 

Scheme 36

F

 

F

 

F

 

F

 

 

 

Zn, r.t.

 

 

F

 

I(Br)

 

F

 

ZnI(Br)

 

 

 

R

R

 

R

 

R

 

 

R

+

 

 

 

X2B

R

 

R

 

 

 

I

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

R

P HN

 

 

 

R

 

 

 

 

 

 

O

ArI

F

 

F

Pd(PPh3)4

 

 

 

 

 

 

[146],[147]

F

 

Ar

 

6181%

F

 

F

1. BuLi, 100 °C

F

 

F

ArI

F

 

F

 

2. ZnCl2, 100 °C

 

Pd(PPh3)4

 

 

 

 

 

F

 

Cl

 

F

 

ZnCl

[145],[148]

F

 

Ar

 

 

 

 

 

 

 

 

 

 

 

 

 

6087%

Scheme 37

Some other related synthesis of - and/or -fluorine-substituted styrenes by the reaction of the corresponding alkenylmetals containing Zn,[150] B,[151],[152] and Sn[153],[154] with various aryl electrophiles are also summarized in Table 7.

TABLE 7. Pd-Catalyzed Cross-Coupling with Tetrasubstituted Alkenylmetals a

R2

 

R3

 

 

 

Yield

 

 

 

 

 

 

 

 

 

 

 

R1

 

 

 

 

 

 

(Selectivity)

Ref-

 

M

Ar–X

 

Conditions

%

erence

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

Hex

 

 

 

ZrCp2Cl

 

Pd(PPh3)4, CuI

66

[141]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

ZnBr

 

Pd(PPh3)4, THF

47

[140]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Соседние файлы в папке Negishi E. 2002 Handbook of organopalladium chemistry for organic synthesis