Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы сик.docx
Скачиваний:
314
Добавлен:
22.05.2015
Размер:
12.8 Mб
Скачать

10. Расчёт прокатных балок. Подбор сечения, проверка несущей способности и жесткости.

В качестве прокатных балок применяются двутавры с уклоном внутренней грани полок, с уклоном параллельных граней полок. Их № подбираются в соответствии с ГОСТ и только тогда, когда мы не можем подобрать прокатный двутавр, а это имеет место при большой нагрузке мы используем сварной двутавр. 1) исходные данные 2) статический расчет. Суть этого блока состоит в выборе расчетной схемы балки и ее статического расчета. 3) конструктивный расчет. Прокатную балку рассчитываем по двум предельным состояниям. По первому предельному состоянию мы должны обеспечить несущую способность балки (прочность, общую устойчивость, местную устойчивость элементов). По второму предельному состоянию мы должны обеспечить пригодность балки к ее нормальной эксплуатации, при этом прогиб балки не должен превышать предельной. Мы должны гарантировать не наступление первого и второго предельного состояния. Сечение балки подбираем из условия ее прочности при расчете в пределах упругих деформаций: σ=Mmax/W < Ry*yc. При благоприятных факторах можно уменьшить размеры сечения за счет развития пластических деформаций: Wreq = Mmax/Ry*yc. Далее по сортаменту принимаем двутавр, момент сопротивления которого равен или больше требуемого, в противном случае условие прочности выполняться не будет. Проверка несущей способности балки подобранного профиля: проверки на прочность балки, изгибаемой в одной из главных плоскостей при расчете в пределах упругих деформаций в сечение где M=Mmax и Q = 0 σ= Mmax/Wфакт˂Ry* γc Q=Qmax и М=0

τ= Qmax∙sx/(Iх∙tw)<ry∙γc При одновременном действии в сечение момента и перерезывающей силы, напряжение приведенное проверяется по формуле: σef=√σx2+3τxy2  <1.15Ry∙γc . Проверяются они в уровне сопряжения пояса со стенкой. Помимо обеспечения прочности балки мы должны обеспечить ее общую устойчивость. Суть явления потери балкой общей устойчивости состоит в следующем: предельное состояние изгибаемого элемента может наступить до того, как балка исчерпает свою прочность, т.е. общей потери устойчивости. Вначале балка изгибается в своей плоскости, совпадающей с плоскостью действия внешней нагрузки, после того, как напряжение в балке достигает критических, она закручивается и выходит из плоскости изгиба, затем, в поясах балках появляются пластически деформации и она теряет несущую способность. M/φb*Wc < Ry*yc. Где φb -коэффициент снижения расчетного сопротивления при потере общей устойчивости балки, Wc - момент сопротивления сечения балки относительно крайнего сжатого волокна. Пункт 5.16* говорит о том, когда проверку общей устойчивости по этой формуле можно не производить. Последняя проверка несущей способности - это проверка местной устойчивости элементов (только тех, где есть сжимающие напряжения). Но в прокатных балках местная устойчивость элементов не проверяется, т.к. она обеспечивается соотношением их размеров, назначенных с учетом устойчивой работы, при различных напряженных состояниях. Второе предельное состояние балки обеспечивает ее нормальную эксплуатацию, подсчитывается прогиб балки и сравнивается с предельным. Подсчет ведется по нормативным нагрузкам 11. Составные балки. Генеральные размеры составных балок. Проверка прочности и жесткости составных балок. Понятие об общей устойчивости балок.

Генеральные размеры

Как уже указывалось, составные балки делаются сварными (преимущественно) и клепаными.  Генеральные размеры — пролет и высоту — назначают, исходя из наивыгоднейших (оптимальных) соотношений размеров сооружения.  В промышленных сооружениях назначение пролета, кроме того, в значительной степени зависит от технологии производства проектируемого объекта.  Минимальная высота балки, определяемая из условия жесткости по таблице Отношения минимальной высоты сечения балки к пролету в зависимости от прогиба (для балок из стали марки Ст. 3) или по формуле (4.VI), как правило, не является оптимальной с точки зрения расхода материала. Определение наивыгоднейшего сечения балки сводится к нахождению минимальной площади сечения F при заданном моменте сопротивления Wтр = который необходим для обеспечения прочности балки.

Сечение составной сварной двутавровой балки

Таким образом, задача состоит в том, чтобы при заданном Wтp найти такое F, зависящее от высоты к и толщины δ стенки, при котором практически обеспечивалась бы устойчивость стенки и тем самым определилось бы наивыгоднейшее распределение материала между стенкой и полками.  Введем следующие понятия: гибкость стенки (отношение высоты стенки к ее толщине)

и коэффициент распределения площади сечения балки

Обозначим через F площадь сечения сварной двутавровой балки, тогда площадь сечения одного пояса

 

Пренебрегая из-за малости моментами инерции поясов относительно их собственной оси, а также отождествляя высоту стенки с высотой балки, можно с достаточной точностью выразить момент сопротивления балки, следующим образом:

Подставив в формулу значение δ = h/K, найдем

Взяв первую производную по высоте и приравняв ее нулю (при выбранной постоянной гибкости К)

получим оптимальную высоту симметричного сечения балки1

или, подставляя К = h/δ:

Задавшись гибкостью стенки и найдя в зависимости от нее оптимальную высоту балки, мы тем самым устанавливаем и наилучшее распределение материала по сечению. В симметричной двутавровой балке при оптимальной высоте материал распределяется поровну между стенкой и поясами (α = 0,5). Это получается из dW/dα = 0 при W = √F3 √αK (1/2 — α/3).  Таким образом, при заданном моменте сопротивления Wтр минимальная площадь сечения получится при оптимальной высоте в зависимости от выбранной гибкости стенки К и коэффициента распределения площади сечения α.  Всякое отклонение от величины φ = 0,5 (при постоянном К) ведет к увеличению площади сечения, а увеличение К (при постоянном α = 0,5) ведет к уменьшению площади сечения. Учитывая, что всякая функция имеет малые отклонения около своего минимума, рационально принимать высоту несколько ниже оптимальной (если это возможно по условию прогиба).  Так, в случае отклонения от оптимальной высоты на величину до 10%, но при сохранении назначенного значения K = h/δ, площадь сечения увеличивается примерно до 1,5%; при отклонении от оптимальной высоты на 20% площадь сечения увеличивается на 5 — 6%.  Для балок, в которых высота по условию жесткости или другим причинам принимается иной, чем оптимальная, найденная при α = 0,5, коэффициент распределения материала по сечению α можно определить [учитывая формулу (21.VI)] по формуле

Высоту составных балок рекомендуется принимать в круглых числах, кратных 50 мм.  Обычно минимальную толщину стенки принимают равной δ = 8 мм, хотя в отдельных случаях можно назначать и толщину 6 мм. Последующее увеличение толщины стенки принимают с градацией в 2 мм.  Практикой проектирования установлены соотношения K = h/δ, приведенные в таблице.  Таблица практических значений К

h в м

0,8

1

1,25

1,5

1,75

2

2,5

3

4

5

δ в мм

8 — 6

10 — 8

10

12

14 — 12

14

16 — 14

18 — 16

20

24 — 22

К

100 — 133

100 — 125

125

125

125 — 146

143

156 — 17

166 — 187

200

208 — 227

Толщина стенки может быть также определена по эмпирической формуле, хорошо отражающей увеличение К с увеличением высоты балки:

где δ в мм, а h в м.  Назначение минимальной толщины стенки по условиям прочности (при действии максимальной поперечной силы Q) производится только в коротких и высоких балках (при h > 1/5l) а именно

где Q — наибольшая поперечная сила (опорная реакция); Rср — расчетное сопротивление стали срезу. Эта формула получена из условия восприятия касательных напряжений только стенкой балки.  Пример 4. Требуется найти оптимальную высоту балки пролетом L = 12 м, нагруженной равномерно распределенной полезной нагрузкой q0 = 16 т/м; коэффициент перегрузки полезной нагрузки n = 1,3; материал Ст. 3; заданный относительный прогиб 1/n0 = 1/600; коэффициент условий работы m = 1.  Решение. Определяем по таблице Отношения минимальной высоты сечения балки к пролету в зависимости от прогиба (для балок из стали марки Ст. 3) минимальную высоту сечения из условия обеспечения жесткости

Собственный вес балки принимаем равным 0,3 т/м (по аналогичным проектам).  Полная расчетная нагрузка на балку будет равна

Здесь 1,1 — коэффициент перегрузки постоянной нагрузки. Максимальный расчетный момент в середине пролета

Требуемый момент сопротивления

Выбираем по таблице К = 125 и определяем оптимальную высоту из условия экономии металла по формуле (22.VI)

При K = 125 толщина стенки равна

 

Назначаем высоту балки h = 1500 мм и толщину стенки δст = 12 мм. 

Проверка общей устойчивости балки

Общая устойчивость балки считается обеспеченной при передаче нагрузки через сплошной жесткий настил, непрерывно опирающийся на сжатый пояс балки и надежно с ним связанный, а также, если соблюдается условие: отношение расчетной длины участка балки lef между связями, препятствующими поперечным смещениям сжатого пояса балки, к его ширине bf не превышает критическое значение, определяемое по формуле

где lef = 3 м – расстояние между точками закрепления сжатого пояса от поперечных смещений, равное шагу балок настила a1.

Проверяем:

Общая устойчивость балки обеспечена.

В случае невыполнения условий необходимо проверить устойчивость балки по формуле

где φb – коэффициент устойчивости при изгибе

Wc – момент сопротивления сечения относительно оси x-x, вычисленный для сжатого пояса;

gс = 0,95 – коэффициент условий работы при расчетах на общую устойчивость при jb < 1

Проверка прочности и прогиба балки

Проверка прочности сводится к проверке наибольших нормальных, ка-сательных напряжений, их совместного действия и при упругопластической ра-боте материала балки к устойчивой ра-боте стенки в области пластических деформаций по формуле :

В разрезных балках места наиболь-ших нормальных и касательных напря-жений обычно не совпадают, их проверяют раздельно по форму­лам

Однако по всей длине балки (за ис-ключением особых сечений, в ко­то-рых М или Qравны нулю) изгибающие моменты и поперечная силадей-ствуют совместно. Поэтому в дополнение к раздельным проверкам

или внутренних рисок поясных заклепок или болтов по высоте.                                                                                                                      '     <

Приведенные напряжения определяют по формуле

(1)

где

—расчетные нормальные и каса-тельные напряжения в краевом участке стенки балки на уровне поясных швов (или заклепок).По формуле (1) прове-ряют переход материала в данной точке в пластичное состояние от сов-местного действия нормальных и каса-тель­ных напряжений. При опирании на верхний пояс балки конструкции, пере-дающей не­подвижнуюсосредоточенную нагрузку, необходима дополнительная проверка стенки балки на местные сминающие стенку напряжения (рис. 7.15):

                         

Если эта проверка не выполняется, то стенку балки необходимо ук­репить ре-бром жесткости, верхний конец которого пригоняется к на­груженному поясу бал-ки. Это ребро через свой пригранный то-рец вос­принимает сосредоточенное дав-ление и прикрепленное к стенке балки сварными швами или заклепками плав-но распределяет его на всю высоту стенки балки. При наличии таких ребер стенки балок на действие местных напряжений не проверяют прогиб балок определяют от действия нор­мативной нагрузки методами строительной ме-ханики; прогиб не должен превышать значений, указанных в СНиП. Прогиб составных балок можно не проверять, если фактическая высота балки больше минимальной 

 

12.Поняттие о местной устойчивости элементов стальных балок. Обеспечение местной устойчивости элементов составных балок. Укрепление балок ребрами жесткости.

 Стальные балки, особенно составные, выполняются из нескольких относительно тонких пластинок, соединенных в единое целое уже при прокате с помощью сварки или болтов. При загружении отдельные зоны сечения могут оказаться сжатыми и выпучиться из плоскости пластинки. Это явление называется потерей местной устойчивости.

Потерявшие местную устойчивость зоны перестают воспринимать приходящуюся на них долю нагрузки и перераспределяют ее на сохранившие местную устойчивость участки сечения. Кроме того, потеря местной устойчивости носит случайный характер, делает сечение несимметричным, может вызывать косой изгиб вместо плоского и закручивание.  Перегрузка и ухудшение условий работы сечения быстро приводят к потере общей устойчивости и разрушению конструкций.

Сжатие в поясе балки создается нормальными напряжениями в стенке – нормальнымикасательнымиместными (от сосредоточенной нагрузки) напряжениямиОбозначим соответствующие критические напряжения, способные, действуя отдельно, вызвать потерю местной устойчивости.  Условия сохранения местной устойчивости будут иметь вид

,.Потеря местной устойчивости не опасна, если критические напряжения будут выше соответствующих расчетных сопротивлений:

,,

 

так как вначале будут достигнуты расчетные сопротивления и исчерпана прочность.

Местные критические напряжения все зависят от гибкости пластинки (размер/толщина) в степени –2. Повышение местных критических напряжений требует увеличения толщины пластинок. Это и есть первый способ обеспечения местной устойчивости элементов балок.

Вторым способом повышения местной устойчивости является введение в конструкцию балок элементов, направленных перпендикулярно к самой большой пластине балки – стенке. Эти элементы, связанные со стенкой и называемые ребрами жесткости, делят стенку на отдельные отсеки, стесняют ее поперечные деформации, улучшают условия закрепления и местную устойчивость. Система ребер жесткости балки приведена на рис. 9.1.

 

 

Рис. 9.1. Ребра жесткости составных стальных балок: 1 – горизонтальные;

2 – дополнительные; 3 – основные поперечные; 4 – опорные

 

Горизонтальные ребра жесткости обеспечивают местную устойчивость сжатой зоны стенки; дополнительные – ставятся под местные нагрузки; основные поперечные, – кроме того, обеспечивают местную устойчивость стенки от действия касательных напряжений. Опорные ребра жесткости передают опорную реакцию на всю высоту балки. В местах постановки дополнительных, основных поперечных и опорных ребер жесткости местные напряжения от сосредоточенных нагрузок не учитываются.