Chivers T. - A Guide to Chalcogen-Nitrogen Chemistry (2005)(en)
.pdf
Weak Intramolecular Chalcogen–Nitrogen Interactions |
301 |
in 15.18 is remarkably resistant to oxidation. Whereas the other sulfur(II) atom is oxidized to a sulfone, an excess of 4-chloroperbenzoic acid reacts preferentially with the C=N double bond giving the epoxide 15.19.18 By contrast, the two sulfur atoms in the diazene 15.11c are oxidized readily to sulfur(VI) with simultaneous reduction of the N=N double bond and formation of a thiatriazole ring to yield 15.20 (Ar = 4-CH3C6H4).19
|
|
|
O |
Se R |
Ph |
|
Ph |
|
|
|
|
|
|
||
|
|
|
|
N |
|
N |
|
|
|
|
|
|
N |
|
S |
|
|
|
|
|
|
N |
S |
|
|
|
|
|
S |
|
N |
|
|
|
15.17 |
|
|
15.18 |
|
|
|
|
Ph |
|
|
Ph |
|
|
|
|
O |
|
N |
|
|
|
|
|
N |
|
|
S |
|
|
|
|
|
N |
S |
|
|
|
|
|
|
S |
|
N |
|
|
|
|
O |
O |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15.19 |
|
|
|
R |
|
Ar |
Ph |
|
|
|
|
|
|
|
|
|
|
|
O |
S |
|
|
O |
|
|
|
|
N |
N |
S |
|
X |
|
|
|
O |
|
|
|
|
|
|
|
|
N |
N |
|
Se |
Se |
|
|
|
|
|
||||
|
|
|
|
|
N |
|
N |
|
|
|
Ar |
|
|
|
|
|
|
|
15.20 |
|
|
15.21a, X =S |
|
|
|
|
|
|
|
15.21b, X = CH2 |
|
302 A Guide to Chalcogen–Nitrogen Chemistry
The methodology of heteroatom-directed lithiation has been applied to the synthesis of a variety of organochalcogen compounds, including unstable, low-valent compounds (Section 15.6).20 The Se•••N interactions in the diselenide 15.4 activate the Se–Se bond toward insertion of a sulfur atom or a methylene group to give the derivatives 15.21a,b.20
Glutathione peroxidase (GPx) is a selenoenzyme that functions as an antioxidant by catalyzing the reduction of harmful peroxides by glutathione.21 Compound 15.4 exhibits GPx activity in the reduction of H2O2 to water.22 It reacts with two equivalents of PhSH to produce the corresponding selenol, which reduces H2O2 to form the selenenic acid. This intermediate is converted to the selenol through a selenenyl sulfide (Scheme 15.1).23 Apparently the intramolecular Se•••N interaction in the model compound 15.4 activates the Se–Se bond, stabilizes the Se–OH group and facilitates the reaction with the thiol to make the disulfide.
H2O |
N |
|
|
SeOH |
PhSH |
|
|
|
H2O2 |
|
|
N
SeH
PhSSPh 
H2O
N
PhSH
SeSPh
Scheme 15.1 Catalytic cycle for the conversion of a diselenide to a selenenic acid
Weak Intramolecular Chalcogen–Nitrogen Interactions |
303 |
The enzyme protein tyrosine phosphatase 1B (PTB1B) is a potential therapeutic agent for treating diabetes. X-Ray crystallographic studies reveal that the sulfur atom of the cysteine in the active site of this enzyme is covalently bonded to a nitrogen atom in the backbone of a neighbouring residue.24 PTB1B uses its active-site cysteine to remove a phosphate group from a tyrosine on the insulin receptor. Its activity is turned off by H2O2-mediated oxidation of the cysteine to cysteine sulfenic acid, which rapidly converts to a sulfenyl amide species. It has been suggested that this sulfur•••nitrogen interaction protects cysteine from being further oxidized before it can return to the active thiol state.24
In some reactions intramolecular chalcogen•••nitrogen interactions may lead to stereochemical control. For example, selenenyl bromides react with C=C double bonds, providing a convenient method of introducing various functional groups. The reaction proceeds readily, but affords a racemic mixture. The modified reagent 15.22 contains a chiral amine in close interaction with the selenium atom. It reacts with olefins affording up to 97% ee of isomer A (Scheme 15.2).25
15.6 Stabilization of Reactive Functional Groups
Intramolecular chalcogen interactions may also stabilize reactive functional groups enabling the isolation of otherwise unstable species or their use as transient intermediates, especially in the case of selenium and tellurium. For example, tellurium(II) compounds of the type ArTeCl are unstable with respect to disproportionation in the absence of such interactions. The diazene derivative 15.23 is stabilized by a Te•••N
Presumably, intramolecular coordination hinders the disproportionation process. Other derivatives of the type RTeX that are stabilized by a Te•••N interaction include 8-(dimethylamino)-1- (naphthyl)tellurium bromide,26 2-(bromotelluro)-N-(p-tolyl)benzylamine,27 and 2-[(dimethylamino)methyl]phenyltellurium iodide.28 Intramolecular donation from a nitrogen donor can also be used to stabilize the Se–I functionality in related compounds.4,29
304 |
|
A Guide to Chalcogen–Nitrogen Chemistry |
||
|
|
|
|
Ph |
|
|
O |
|
|
|
|
|
|
O |
|
|
N |
|
Ph |
|
|
|
+ Me |
|
|
|
|
|
O |
|
|
Se |
O |
Ph |
|
|
Br |
|
|
|
|
15.22 |
|
|
|
|
MeOH |
|
|
|
Me |
OMe |
|
OMe |
|
|
|
||
A |
H |
|
|
H |
|
H |
|
||
|
|
|
|
|
|
RSe |
Ph |
|
Ph |
+H2O2 / CH2Cl2
H |
OMe |
OMe |
Me |
|
|
B |
Ph |
Ph |
|
||
|
|
|
RSe |
H |
H |
Scheme 15.2 Stereochemical control under the influence of an Se•••N interaction
Intramolecular heteroatom coordination may also influence the stabilities or structures of catenated tellurium compounds. For example, a rare example of a tritelluride, bis[2-(2-pyridyl)phenyl]tritelluride, is stabilized by a Te•••N contact of 2.55 Å.30 The ditelluride (2- MeOC6H4COTe)2 has an unusual planar structure. Although the C=O•••Te interaction is longer (3.11 Å) than the Me•••O contact (2.76 Å), ab initio molecular orbital calculations indicate that the planarity results predominantly from the former intramolecular connection.31
Weak Intramolecular Chalcogen–Nitrogen Interactions |
305 |
Transannular Te•••N interactions have also been employed to stabilize compounds of the type 15.24 with terminal Te=E (E = S, Se) bonds.32 The Te=Se bond length in 15.24b is 2.44 Å (cf. 2.54 Å for a Te– S single bond) and d(Te•••N) = 2.62 Å. Intramolecular coordination was also employed in the isolation of the first aryl-selenenium and – tellurenium cations 15.25a,b as [PF6]- salts.33
NMe2
E
N |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
E+ |
PF6- |
|
|
|
|
|
|
|
|
Te |
|
|
|
|
|
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
N |
Te |
|
Cl |
|
|
|
|
|
|
|
|
|
NMe2 |
|
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
N |
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
Me |
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
15.23 |
|
|
|
|
|
|
15.24a, E = S |
|
|
|
|
|
15.25a, E = Se |
|
|||||||||
|
|
|
|
|
|
|
|
|
15.24b, E = Se |
|
|
|
|
|
15.25b, E = Te |
|
|||||||||
The Se•••N interaction has been utilized in the stabilization of a transient selenenic acid ArSeOH.34 Through such a reactive intermediate the diselenide 15.26 catalyzes the oxidation of alkenes to allylic esters or ethers in the presence of sodium persulfate.35 Compound 15.26 also catalyzes the oxidation of thiols to disulfides by hydrogen peroxide serving as a model to study the role of the amino nitrogens located at the active centre of glutathione peroxidase.11,36 Characterization of the intermediate steps by 77Se NMR spectroscopy and kinetic studies indicate that the model behaves in the same way as the enzyme, although the latter possesses two nitrogens in proximity to the selenium of a selenocysteine. The proximal nitrogen is thought to play an additional role in activating the selenol into selenolate.
Although bulky aryl groups, e.g., mesityl, are not effective in stabilizing arylselenium (II) azides, the use of intramolecular coordination in 2-Me2NCH2C6H4SeN3 has enabled the first structural characterization of this reactive functionality.37 The Se–N3 (azide) bond length is 2.11 Å, while the intramolecular Se•••N distance is 2.20 Å, cf. 2.14 Å in the arylselenium bromide 15.5, and 2.13 Å and 2.17 Å, respectively, in the corresponding chloride and iodide.37 This
306 |
A Guide to Chalcogen–Nitrogen Chemistry |
arylselenium (II) azide is thermally unstable at 25°C; it decomposes with loss of N2 to give the corresponding diselenide.
Metal selenolates of the type M(SeAr)2 (M = Zn, Cd, Hg) are usually insoluble, polymeric compounds. Intramolecular Se•••N coordination has been employed to stabilize monomeric mercury selenolates, e.g., 15.27, but this approach was not successful for the zinc and cadmium derivatives.38
Chiral organoselenenyl halides may also be stabilized by intramolecular Se•••N interactions; 77Se NMR chemical shifts indicate that these interactions are maintained in solution.29b
|
N |
|
|
N |
|
Se |
|
|
Se |
Se Hg |
Se |
|
|
|
|
N |
N |
|
|
15.26 |
15.27 |
References
1.I. Vargas-Baca and T. Chivers, Phosphorus, Sulfur and Silicon, 164, 207 (2000).
2.M. Iwaoka and S. Tomoda, Bull. Chem. Soc. Jpn., 75, 7611 (2002).
3.R. Kaur, H. B. Singh and R. P. Patel, J. Chem. Soc., Dalton Trans., 2719 (1996).
4.G. Mugesh, A. Panda, H. B. Singh and R. J. Butcher, Chem. Eur., J. 5, 1411 (1999).
5.G. L’abbe, L. van Meervelt, S. Emmers, W. Dehaen and S. Toppets, J. Heterocycl. Chem., 29, 1765 (1992).
6.N. W. Alcock, Adv. Inorg. Chem. Radiochem., 15, 1 (1972).
Weak Intramolecular Chalcogen–Nitrogen Interactions |
307 |
7.N. Sudha and H. B. Singh, Coord. Chem. Rev., 135/136, 469 (1994).
8.M. Kuti, J. Rábai, I. Kapovits, I. Jalsovski, G. Argay, A. Kálmán and L. Prákány,
J.Mol. Struct., 382, 1 (1996).
9.(a) V. Chandrasekhar, T. Chivers, J. F. Fait and S. S. Kumaravel, J. Am. Chem. Soc.,
112, 5371 (1990); (b) V. Chandrasekhar, T. Chivers, S. S. Kumaravel, M. Parvez and M. N. S. Rao, Inorg. Chem., 30, 4125 (1991).
10.(a) T. Chivers, B. McGarvey, M. Parvez, I. Vargas-Baca, T. Ziegler and P. Zoricak,
Inorg. Chem., 35, 3839 (1996); (b) T. Chivers, I. H. Krouse, M. Parvez, I. VargasBaca, T. Ziegler and P. Zoricak, Inorg. Chem., 35, 5836 (1996).
11.M. Iwaoka and S. Tomoda, J. Am. Chem. Soc., 118, 8077 (1996).
12.K. Ohkata, M. Ohsugi, K. Yamamoto, M. Ohsawa and K. Akiba, J. Am. Chem. Soc.,
118, 6355 (1996).
13.K. Akiba, K. Takee, Y. Shimizu and K. Ohkata, J. Am. Chem. Soc., 108, 6327 (1986).
14.K. Ohkata, M. Ohnishi, K. Yoshinaga, K. Akiba, J. C. Rongione and J. C. Martin,
J.Am. Chem. Soc., 113, 9270 (1991).
15.G. A. Landrum and R. Hoffmann, Angew. Chem., Int. Ed. Engl., 37, 1887 (1998).
16.D. H. R. Barton, M. B. Hall, Z. Lin, S. Parekh and J. Reibenspies, J. Am. Chem. Soc., 115, 5056 (1993).
17.M. Iwaoka, H. Komatsu, T. Katsuda and S. Tomoda, J. Am. Chem. Soc., 126, 5309 (2004).
18.P. J. Dunn, C. W. Rees, A. M. Z. Slawin and D. J. Williams, Chem. Commun., 1134 (1989).
19.V. Chandrasekhar, T. Chivers, L. Ellis, I. Krouse. M. Parvez and I. Vargas-Baca,
Can. J. Chem., 75, 1188 (1997).
20.G. Mugesh and H. B. Singh, Acc. Chem. Res., 35, 226 (2002).
21.G. Mugesh and W-W. du Mont, Chem. Eur. J., 7, 1365 (2001).
22.G. Mugesh, A. Panda, H. B. Singh, N. S. Punekhar and R. J. Butcher, Chem. Commun., 2227 (1998).
308 |
A Guide to Chalcogen–Nitrogen Chemistry |
23.G. Mugesh, A. Panda, H. B. Singh, N. S. Punekhar and R. J. Butcher, J. Am. Chem. Soc., 123, 839 (2001).
24.(a) A. Salmee, J. N. Andersen, M. P. Myers, T-C. Meng, J. A. Hinks, N. K. Tonks and D. Barford, Nature, 423, 769 (2003); (b) R. L. M. van Montfort, M. Congreve,
D.Tisi, R. Carr and H. Jhoti, Nature, 423, 773 (2003).
25.K. I. Fujita, K. Murata, M. Iwaoka and S. Tomoda, Tetrahedron, 53, 2029 (1997).
26.S. C. Menon, H. B. Singh, J. M. Jasinski, J. P. Jasinski and R. J. Butcher,
Organometallics, 15, 1707 (1996).
27.A. G. Maslakov, W. R. McWhinnie, M. C. Parry, N. Shaikh, S. L. W. McWhinnie and T. A. Hamor, J. Chem. Soc., Dalton Trans., 619 (1993).
28.R. Kaur, H. B. Singh and R. J. Butcher, Organometallics, 14, 4755 (1995).
29.(a) W-W. du Mont, A. Martens-von Salzen, F. Ruthe, E. Seppälä, G. Mugesh,
F.A. Devillanova, V. Lippolis and N. Kuhn, J. Organomet. Chem., 623, 14 (2001);
(b) G. Mugesh, H. B. Singh and R. J. Butcher, Tetrahedron: Asymmetry, 10, 237
(1999); (c) A. Panda, G. Mugesh, H. B. Singh and R. J. Butcher, Organometallics,
18, 1986 (1999).
30.T. A. Hamor, N. Al-Salim, A. A. West and W. R. McWhinnie, J. Organomet. Chem., 310, C5 (1986).
31.O. Niyomura, S. Kato and S. Inagaki, J. Am. Chem. Soc., 122, 2132 (2000).
32.H. Fijihara, T. Uehara and N. Furukawa, J. Am. Chem. Soc., 117, 6288 (1995).
33.H. Fujihara, H. Mima and N. Furukawa, J. Am. Chem. Soc., 117, 10153 (1995).
34.M. Iwaoka and S. Tomoda, Phosphorus, Sulfur and Silicon, 67, 125 (1992).
35.M. Iwaoka and S. Tomoda, Chem. Commun., 1165 (1992).
36.M. Iwaoka and S. Tomoda, J. Am. Chem. Soc., 116, 2557 (1994).
37.T. M. Klapötke, B. Krumm and K. Polborn, J. Am. Chem. Soc., 126, 710 (2004).
38.R. Kaur, H. B. Singh, R. J. Patel and S. K. Kulshrestha, J. Chem. Soc., Dalton Trans., 461 (1996).
Subject Index
A |
|
|
|
Acyclic cation, [N(SCl)2]+ |
147 |
||
Acyclic cation, [N(SeCl)2]+ |
147 |
||
Acyclic cation, [N(SeCl2)2]+ 147 |
|||
Allylic amination |
|
185 |
|
Anion, [NSCl2]- |
143 |
|
|
Anion, [NSF2]- |
142 |
|
|
Anion, [NSF2]-, complex |
132 |
||
Anion, [N3S3O3F4]- |
154 |
|
|
Anion, [N3S3O6]3- |
175 |
|
|
Anion, [N3Se3O6]3- |
175 |
|
|
Anion, [SN]-, complexes |
131 |
||
Anion, [SN2]2- |
98, 99 |
|
|
Anion, [SN2]2-, complexes |
136 |
||
Anion, [SNO]- (see thionitrite) |
|||
Anion, [SO2N3]- |
|
165 |
|
Anion, [SO3N3]- |
|
165 |
|
Anion, [SSNO]- (see perthionitrite)
Anion, [SSNS]- |
100 |
|
Anion, [SSNS]-, complexes |
128 |
|
Anion, [SSNSS]- |
100 |
|
Anion, [S2N2]2-, complexes |
128 |
|
Anion, [S2N2H]- |
101 |
|
Anion, [S2N2H]-, complexes |
127 |
|
Anion, [S2N3]3-, complexes |
130 |
|
Anion, [S3N3]- |
102 |
|
Anion, [S3N3O]- |
174 |
|
Anion, [S3N3O2]- |
174 |
|
Anion, [S3N3O4]- |
174 |
|
Anion, [S3N4]2-, complexes |
130 |
|
Anion, [S4N3]-, complexes |
130 |
|
309
310 |
|
|
|
|
|
|
Subject Index |
Anion, [S4N4]2-, complexes |
130 |
|
|||||
Anion, [S4N5]- |
103 |
|
|
|
|
||
Anion, [S4N5O]- |
175 |
|
|
|
|||
Anion, [S4N5O2]- |
175 |
|
|
|
|||
Anion, [Se2N2]2-, complexes |
128 |
|
|||||
Anion, [Se3N]-, complexes |
129 |
|
|
||||
Anomeric effect |
150, 245 |
|
|
|
|||
Antiaromatic systems |
61 |
|
|
|
|||
Antimony derivatives |
266 |
|
|
|
|||
Aromaticity |
|
58, 60 |
|
|
|
|
|
Arsenic derivative, MeAsN2S2 |
265 |
|
|||||
Arylselenium azides |
23, 306 |
|
|
||||
As2N4S2 ring |
267 |
|
|
|
|
||
Atacticity |
290 |
|
|
|
|
|
|
Azadisulfite dianion |
171 |
|
|
|
|||
Azasulfite anions |
171 |
|
|
|
|||
B |
|
|
|
|
|
|
|
Benzenesulfinyl azide, PhS(O)N3 |
202 |
||||||
Benzodithiadiazine |
|
245, 246 |
|
|
|||
Benzo-1,3,2-dithiazolyl 201 |
|
|
|||||
Benzo-1,2,5-selenadiazole 228 |
|
|
|||||
Benzo-1,2,5-telluradiazoles 229 |
|
||||||
Benzo-1,2,3-thiadiazole 231 |
|
|
|||||
Benzo-1,2,5-thiadiazole 231 |
|
|
|||||
Benzotrithiadiazepine |
247 |
|
|
|
|||
Bicyclic compound, R2PN5S3 |
261 |
|
|||||
Bicyclic ring, RCN5S3 |
253, 254 |
|
|||||
Bis(sulfinylamino)selane, Se(NSO)2 |
166 |
||||||
Bis(sulfinylamino)sulfane, S(NSO)2 |
166 |
||||||
Bis(sulfinylamino)tellane, Te(NSO)2 |
166 |
||||||
Bistability |
227 |
|
|
|
|
|
|
C |
|
|
|
|
|
|
|
Chalcogen-nitrogen bonds, formation |
18–28 |
||||||
Chiral organoselenyl halides |
306 |
|
|||||
CN2Te ring |
|
213 |
|
|
|
|
|
C2N4S2 rings |
|
22 |
|
|
|
|
|
Conducting polymers |
280 |
|
|
|
|||
Conductivity, (SN)X |
56 |
|
|
|
|||
Covalent radii |
2 |
|
|
|
|
|
|
Cyanuric-sulfanuric system |
243, 251 |
||||||
