Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Chivers T. - A Guide to Chalcogen-Nitrogen Chemistry (2005)(en)

.pdf
Скачиваний:
87
Добавлен:
15.08.2013
Размер:
3 Mб
Скачать

Weak Intramolecular Chalcogen–Nitrogen Interactions

301

in 15.18 is remarkably resistant to oxidation. Whereas the other sulfur(II) atom is oxidized to a sulfone, an excess of 4-chloroperbenzoic acid reacts preferentially with the C=N double bond giving the epoxide 15.19.18 By contrast, the two sulfur atoms in the diazene 15.11c are oxidized readily to sulfur(VI) with simultaneous reduction of the N=N double bond and formation of a thiatriazole ring to yield 15.20 (Ar = 4-CH3C6H4).19

 

 

 

O

Se R

Ph

 

Ph

 

 

 

 

 

 

 

 

 

 

N

 

N

 

 

 

 

 

 

N

 

S

 

 

 

 

 

 

N

S

 

 

 

 

 

S

 

N

 

 

 

15.17

 

 

15.18

 

 

 

 

Ph

 

 

Ph

 

 

 

 

O

 

N

 

 

 

 

 

N

 

 

S

 

 

 

 

 

N

S

 

 

 

 

 

 

S

 

N

 

 

 

 

O

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15.19

 

 

 

R

 

Ar

Ph

 

 

 

 

 

 

 

 

 

 

O

S

 

 

O

 

 

 

 

N

N

S

 

X

 

 

O

 

 

 

 

 

 

 

N

N

 

Se

Se

 

 

 

 

 

 

 

 

 

N

 

N

 

 

 

Ar

 

 

 

 

 

 

 

15.20

 

 

15.21a, X =S

 

 

 

 

 

 

15.21b, X = CH2

302 A Guide to Chalcogen–Nitrogen Chemistry

The methodology of heteroatom-directed lithiation has been applied to the synthesis of a variety of organochalcogen compounds, including unstable, low-valent compounds (Section 15.6).20 The Se•••N interactions in the diselenide 15.4 activate the Se–Se bond toward insertion of a sulfur atom or a methylene group to give the derivatives 15.21a,b.20

Glutathione peroxidase (GPx) is a selenoenzyme that functions as an antioxidant by catalyzing the reduction of harmful peroxides by glutathione.21 Compound 15.4 exhibits GPx activity in the reduction of H2O2 to water.22 It reacts with two equivalents of PhSH to produce the corresponding selenol, which reduces H2O2 to form the selenenic acid. This intermediate is converted to the selenol through a selenenyl sulfide (Scheme 15.1).23 Apparently the intramolecular Se•••N interaction in the model compound 15.4 activates the Se–Se bond, stabilizes the Se–OH group and facilitates the reaction with the thiol to make the disulfide.

H2O

N

 

 

SeOH

PhSH

 

 

H2O2

 

 

N

SeH

PhSSPh

H2O

N

PhSH

SeSPh

Scheme 15.1 Catalytic cycle for the conversion of a diselenide to a selenenic acid

interaction.7

Weak Intramolecular Chalcogen–Nitrogen Interactions

303

The enzyme protein tyrosine phosphatase 1B (PTB1B) is a potential therapeutic agent for treating diabetes. X-Ray crystallographic studies reveal that the sulfur atom of the cysteine in the active site of this enzyme is covalently bonded to a nitrogen atom in the backbone of a neighbouring residue.24 PTB1B uses its active-site cysteine to remove a phosphate group from a tyrosine on the insulin receptor. Its activity is turned off by H2O2-mediated oxidation of the cysteine to cysteine sulfenic acid, which rapidly converts to a sulfenyl amide species. It has been suggested that this sulfur•••nitrogen interaction protects cysteine from being further oxidized before it can return to the active thiol state.24

In some reactions intramolecular chalcogen•••nitrogen interactions may lead to stereochemical control. For example, selenenyl bromides react with C=C double bonds, providing a convenient method of introducing various functional groups. The reaction proceeds readily, but affords a racemic mixture. The modified reagent 15.22 contains a chiral amine in close interaction with the selenium atom. It reacts with olefins affording up to 97% ee of isomer A (Scheme 15.2).25

15.6 Stabilization of Reactive Functional Groups

Intramolecular chalcogen interactions may also stabilize reactive functional groups enabling the isolation of otherwise unstable species or their use as transient intermediates, especially in the case of selenium and tellurium. For example, tellurium(II) compounds of the type ArTeCl are unstable with respect to disproportionation in the absence of such interactions. The diazene derivative 15.23 is stabilized by a Te•••N

Presumably, intramolecular coordination hinders the disproportionation process. Other derivatives of the type RTeX that are stabilized by a Te•••N interaction include 8-(dimethylamino)-1- (naphthyl)tellurium bromide,26 2-(bromotelluro)-N-(p-tolyl)benzylamine,27 and 2-[(dimethylamino)methyl]phenyltellurium iodide.28 Intramolecular donation from a nitrogen donor can also be used to stabilize the Se–I functionality in related compounds.4,29

304

 

A Guide to Chalcogen–Nitrogen Chemistry

 

 

 

 

Ph

 

 

O

 

 

 

 

 

 

O

 

 

N

 

Ph

 

 

 

+ Me

 

 

 

 

O

 

 

Se

O

Ph

 

 

Br

 

 

 

 

15.22

 

 

 

 

MeOH

 

 

 

Me

OMe

 

OMe

 

 

 

A

H

 

 

H

 

H

 

 

 

 

 

 

RSe

Ph

 

Ph

+H2O2 / CH2Cl2

H

OMe

OMe

Me

 

 

B

Ph

Ph

 

 

 

RSe

H

H

Scheme 15.2 Stereochemical control under the influence of an Se•••N interaction

Intramolecular heteroatom coordination may also influence the stabilities or structures of catenated tellurium compounds. For example, a rare example of a tritelluride, bis[2-(2-pyridyl)phenyl]tritelluride, is stabilized by a Te•••N contact of 2.55 Å.30 The ditelluride (2- MeOC6H4COTe)2 has an unusual planar structure. Although the C=O•••Te interaction is longer (3.11 Å) than the Me•••O contact (2.76 Å), ab initio molecular orbital calculations indicate that the planarity results predominantly from the former intramolecular connection.31

Weak Intramolecular Chalcogen–Nitrogen Interactions

305

Transannular Te•••N interactions have also been employed to stabilize compounds of the type 15.24 with terminal Te=E (E = S, Se) bonds.32 The Te=Se bond length in 15.24b is 2.44 Å (cf. 2.54 Å for a Te– S single bond) and d(Te•••N) = 2.62 Å. Intramolecular coordination was also employed in the isolation of the first aryl-selenenium and – tellurenium cations 15.25a,b as [PF6]- salts.33

NMe2

E

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E+

PF6-

 

 

 

 

 

 

 

Te

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

Te

 

Cl

 

 

 

 

 

 

 

 

 

NMe2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

15.23

 

 

 

 

 

 

15.24a, E = S

 

 

 

 

 

15.25a, E = Se

 

 

 

 

 

 

 

 

 

 

15.24b, E = Se

 

 

 

 

 

15.25b, E = Te

 

The Se•••N interaction has been utilized in the stabilization of a transient selenenic acid ArSeOH.34 Through such a reactive intermediate the diselenide 15.26 catalyzes the oxidation of alkenes to allylic esters or ethers in the presence of sodium persulfate.35 Compound 15.26 also catalyzes the oxidation of thiols to disulfides by hydrogen peroxide serving as a model to study the role of the amino nitrogens located at the active centre of glutathione peroxidase.11,36 Characterization of the intermediate steps by 77Se NMR spectroscopy and kinetic studies indicate that the model behaves in the same way as the enzyme, although the latter possesses two nitrogens in proximity to the selenium of a selenocysteine. The proximal nitrogen is thought to play an additional role in activating the selenol into selenolate.

Although bulky aryl groups, e.g., mesityl, are not effective in stabilizing arylselenium (II) azides, the use of intramolecular coordination in 2-Me2NCH2C6H4SeN3 has enabled the first structural characterization of this reactive functionality.37 The Se–N3 (azide) bond length is 2.11 Å, while the intramolecular Se•••N distance is 2.20 Å, cf. 2.14 Å in the arylselenium bromide 15.5, and 2.13 Å and 2.17 Å, respectively, in the corresponding chloride and iodide.37 This

306

A Guide to Chalcogen–Nitrogen Chemistry

arylselenium (II) azide is thermally unstable at 25°C; it decomposes with loss of N2 to give the corresponding diselenide.

Metal selenolates of the type M(SeAr)2 (M = Zn, Cd, Hg) are usually insoluble, polymeric compounds. Intramolecular Se•••N coordination has been employed to stabilize monomeric mercury selenolates, e.g., 15.27, but this approach was not successful for the zinc and cadmium derivatives.38

Chiral organoselenenyl halides may also be stabilized by intramolecular Se•••N interactions; 77Se NMR chemical shifts indicate that these interactions are maintained in solution.29b

 

N

 

 

N

 

Se

 

 

Se

Se Hg

Se

 

 

 

N

N

 

 

15.26

15.27

References

1.I. Vargas-Baca and T. Chivers, Phosphorus, Sulfur and Silicon, 164, 207 (2000).

2.M. Iwaoka and S. Tomoda, Bull. Chem. Soc. Jpn., 75, 7611 (2002).

3.R. Kaur, H. B. Singh and R. P. Patel, J. Chem. Soc., Dalton Trans., 2719 (1996).

4.G. Mugesh, A. Panda, H. B. Singh and R. J. Butcher, Chem. Eur., J. 5, 1411 (1999).

5.G. L’abbe, L. van Meervelt, S. Emmers, W. Dehaen and S. Toppets, J. Heterocycl. Chem., 29, 1765 (1992).

6.N. W. Alcock, Adv. Inorg. Chem. Radiochem., 15, 1 (1972).

Weak Intramolecular Chalcogen–Nitrogen Interactions

307

7.N. Sudha and H. B. Singh, Coord. Chem. Rev., 135/136, 469 (1994).

8.M. Kuti, J. Rábai, I. Kapovits, I. Jalsovski, G. Argay, A. Kálmán and L. Prákány,

J.Mol. Struct., 382, 1 (1996).

9.(a) V. Chandrasekhar, T. Chivers, J. F. Fait and S. S. Kumaravel, J. Am. Chem. Soc.,

112, 5371 (1990); (b) V. Chandrasekhar, T. Chivers, S. S. Kumaravel, M. Parvez and M. N. S. Rao, Inorg. Chem., 30, 4125 (1991).

10.(a) T. Chivers, B. McGarvey, M. Parvez, I. Vargas-Baca, T. Ziegler and P. Zoricak,

Inorg. Chem., 35, 3839 (1996); (b) T. Chivers, I. H. Krouse, M. Parvez, I. VargasBaca, T. Ziegler and P. Zoricak, Inorg. Chem., 35, 5836 (1996).

11.M. Iwaoka and S. Tomoda, J. Am. Chem. Soc., 118, 8077 (1996).

12.K. Ohkata, M. Ohsugi, K. Yamamoto, M. Ohsawa and K. Akiba, J. Am. Chem. Soc.,

118, 6355 (1996).

13.K. Akiba, K. Takee, Y. Shimizu and K. Ohkata, J. Am. Chem. Soc., 108, 6327 (1986).

14.K. Ohkata, M. Ohnishi, K. Yoshinaga, K. Akiba, J. C. Rongione and J. C. Martin,

J.Am. Chem. Soc., 113, 9270 (1991).

15.G. A. Landrum and R. Hoffmann, Angew. Chem., Int. Ed. Engl., 37, 1887 (1998).

16.D. H. R. Barton, M. B. Hall, Z. Lin, S. Parekh and J. Reibenspies, J. Am. Chem. Soc., 115, 5056 (1993).

17.M. Iwaoka, H. Komatsu, T. Katsuda and S. Tomoda, J. Am. Chem. Soc., 126, 5309 (2004).

18.P. J. Dunn, C. W. Rees, A. M. Z. Slawin and D. J. Williams, Chem. Commun., 1134 (1989).

19.V. Chandrasekhar, T. Chivers, L. Ellis, I. Krouse. M. Parvez and I. Vargas-Baca,

Can. J. Chem., 75, 1188 (1997).

20.G. Mugesh and H. B. Singh, Acc. Chem. Res., 35, 226 (2002).

21.G. Mugesh and W-W. du Mont, Chem. Eur. J., 7, 1365 (2001).

22.G. Mugesh, A. Panda, H. B. Singh, N. S. Punekhar and R. J. Butcher, Chem. Commun., 2227 (1998).

308

A Guide to Chalcogen–Nitrogen Chemistry

23.G. Mugesh, A. Panda, H. B. Singh, N. S. Punekhar and R. J. Butcher, J. Am. Chem. Soc., 123, 839 (2001).

24.(a) A. Salmee, J. N. Andersen, M. P. Myers, T-C. Meng, J. A. Hinks, N. K. Tonks and D. Barford, Nature, 423, 769 (2003); (b) R. L. M. van Montfort, M. Congreve,

D.Tisi, R. Carr and H. Jhoti, Nature, 423, 773 (2003).

25.K. I. Fujita, K. Murata, M. Iwaoka and S. Tomoda, Tetrahedron, 53, 2029 (1997).

26.S. C. Menon, H. B. Singh, J. M. Jasinski, J. P. Jasinski and R. J. Butcher,

Organometallics, 15, 1707 (1996).

27.A. G. Maslakov, W. R. McWhinnie, M. C. Parry, N. Shaikh, S. L. W. McWhinnie and T. A. Hamor, J. Chem. Soc., Dalton Trans., 619 (1993).

28.R. Kaur, H. B. Singh and R. J. Butcher, Organometallics, 14, 4755 (1995).

29.(a) W-W. du Mont, A. Martens-von Salzen, F. Ruthe, E. Seppälä, G. Mugesh,

F.A. Devillanova, V. Lippolis and N. Kuhn, J. Organomet. Chem., 623, 14 (2001);

(b) G. Mugesh, H. B. Singh and R. J. Butcher, Tetrahedron: Asymmetry, 10, 237

(1999); (c) A. Panda, G. Mugesh, H. B. Singh and R. J. Butcher, Organometallics,

18, 1986 (1999).

30.T. A. Hamor, N. Al-Salim, A. A. West and W. R. McWhinnie, J. Organomet. Chem., 310, C5 (1986).

31.O. Niyomura, S. Kato and S. Inagaki, J. Am. Chem. Soc., 122, 2132 (2000).

32.H. Fijihara, T. Uehara and N. Furukawa, J. Am. Chem. Soc., 117, 6288 (1995).

33.H. Fujihara, H. Mima and N. Furukawa, J. Am. Chem. Soc., 117, 10153 (1995).

34.M. Iwaoka and S. Tomoda, Phosphorus, Sulfur and Silicon, 67, 125 (1992).

35.M. Iwaoka and S. Tomoda, Chem. Commun., 1165 (1992).

36.M. Iwaoka and S. Tomoda, J. Am. Chem. Soc., 116, 2557 (1994).

37.T. M. Klapötke, B. Krumm and K. Polborn, J. Am. Chem. Soc., 126, 710 (2004).

38.R. Kaur, H. B. Singh, R. J. Patel and S. K. Kulshrestha, J. Chem. Soc., Dalton Trans., 461 (1996).

Subject Index

A

 

 

 

Acyclic cation, [N(SCl)2]+

147

Acyclic cation, [N(SeCl)2]+

147

Acyclic cation, [N(SeCl2)2]+ 147

Allylic amination

 

185

 

Anion, [NSCl2]-

143

 

Anion, [NSF2]-

142

 

Anion, [NSF2]-, complex

132

Anion, [N3S3O3F4]-

154

 

Anion, [N3S3O6]3-

175

 

Anion, [N3Se3O6]3-

175

 

Anion, [SN]-, complexes

131

Anion, [SN2]2-

98, 99

 

Anion, [SN2]2-, complexes

136

Anion, [SNO]- (see thionitrite)

Anion, [SO2N3]-

 

165

 

Anion, [SO3N3]-

 

165

 

Anion, [SSNO]- (see perthionitrite)

Anion, [SSNS]-

100

 

Anion, [SSNS]-, complexes

128

Anion, [SSNSS]-

100

 

Anion, [S2N2]2-, complexes

128

Anion, [S2N2H]-

101

 

Anion, [S2N2H]-, complexes

127

Anion, [S2N3]3-, complexes

130

Anion, [S3N3]-

102

 

Anion, [S3N3O]-

174

 

Anion, [S3N3O2]-

174

 

Anion, [S3N3O4]-

174

 

Anion, [S3N4]2-, complexes

130

Anion, [S4N3]-, complexes

130

309

310

 

 

 

 

 

 

Subject Index

Anion, [S4N4]2-, complexes

130

 

Anion, [S4N5]-

103

 

 

 

 

Anion, [S4N5O]-

175

 

 

 

Anion, [S4N5O2]-

175

 

 

 

Anion, [Se2N2]2-, complexes

128

 

Anion, [Se3N]-, complexes

129

 

 

Anomeric effect

150, 245

 

 

 

Antiaromatic systems

61

 

 

 

Antimony derivatives

266

 

 

 

Aromaticity

 

58, 60

 

 

 

 

Arsenic derivative, MeAsN2S2

265

 

Arylselenium azides

23, 306

 

 

As2N4S2 ring

267

 

 

 

 

Atacticity

290

 

 

 

 

 

Azadisulfite dianion

171

 

 

 

Azasulfite anions

171

 

 

 

B

 

 

 

 

 

 

 

Benzenesulfinyl azide, PhS(O)N3

202

Benzodithiadiazine

 

245, 246

 

 

Benzo-1,3,2-dithiazolyl 201

 

 

Benzo-1,2,5-selenadiazole 228

 

 

Benzo-1,2,5-telluradiazoles 229

 

Benzo-1,2,3-thiadiazole 231

 

 

Benzo-1,2,5-thiadiazole 231

 

 

Benzotrithiadiazepine

247

 

 

 

Bicyclic compound, R2PN5S3

261

 

Bicyclic ring, RCN5S3

253, 254

 

Bis(sulfinylamino)selane, Se(NSO)2

166

Bis(sulfinylamino)sulfane, S(NSO)2

166

Bis(sulfinylamino)tellane, Te(NSO)2

166

Bistability

227

 

 

 

 

 

C

 

 

 

 

 

 

 

Chalcogen-nitrogen bonds, formation

18–28

Chiral organoselenyl halides

306

 

CN2Te ring

 

213

 

 

 

 

 

C2N4S2 rings

 

22

 

 

 

 

 

Conducting polymers

280

 

 

 

Conductivity, (SN)X

56

 

 

 

Covalent radii

2

 

 

 

 

 

Cyanuric-sulfanuric system

243, 251

Соседние файлы в предмете Химия