Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Chivers T. - A Guide to Chalcogen-Nitrogen Chemistry (2005)(en)

.pdf
Скачиваний:
83
Добавлен:
15.08.2013
Размер:
3 Mб
Скачать

Five-membered Carbon–Nitrogen–Chalcogen Ring Systems

231

systems consistent with weaker E–N Œ-bonds for the heavier chalcogens. X-ray structural investigations of 1,2,5-thiadiazoles indicate extensive Œ- delocalization in the heterocyclic ring and, in the case of the benzo derivative, quinonoid character for the benzene ring, suggesting contributions from both resonances structures A and B.104 These conclusions are supported by 1H NMR, microwave, and photoelectron spectra, and by ab initio molecular orbital calculations.105 The reactions of the parent 1,2,5-thiadiazole indicate that ionic resonance forms such as C are also important contributors to the resonance hybrid.106

N

N

-

N

E

E

E+

N

N

N

A

B

C

An N-bonded 1:1 adduct of benzo-1,2,5-thiadiazole with the Lewis acid AsF5 has been structurally characterized.107 The coordination of AsF5 to one of the nitrogens introduces asymmetry in the heterocyclic ring [d(S–N) = 1.63 and 1.58 Å, cf. 1.60 Å in the free ligand]. The quinonoid character of the benzene ring is still apparent in the adduct. A 1:1 complex with Pt(II) and 1:1 or 1:2 complexes with Cr(0), Mo(0) and W(0) have been reported.108-110 These complexes are considered to be N- monodentate or N,N-chelated, respectively, on the basis of spectroscopic

evidence. 1,2,5-Selenadiazole also forms mono-adducts with M(CO)5 (M= Cr, Mo, W).110 Se–N bond insertion occurs in the reaction of the

selenadiazole (CN)2C2N2Se with Pt(C2H4)(PPh3)2 to give the sixmembered ring 11.29.111

N

Se

PPh3

S

 

S

NC C

Pt

 

 

N

N

C

N

PPh3

N

 

N

NC

 

 

 

 

AsF5

 

11.29

 

11.30

 

11.31

232

A Guide to Chalcogen–Nitrogen Chemistry

The structure

of the isomeric benzo-1,2,3-thiadiazole 11.30 is

unknown,112 but the 1:1 adduct with AsF5 (11.31) has been structurally characterized. The AsF5 molecule is coordinated to the carbon-bonded nitrogen atom.107 Cycloocteno-1,2,3-selenadiazole is an effective source of selenium for the production of semi-conductors such as cadmium selenide.113

References

1.M-H. Whangbo, R. Hoffman and R. B. Woodward, Proc. R. Soc. London, Ser. A,

366, 23 (1979).

2.(a) J. M. Rawson, A. J. Banister and I. Lavender, Adv. Heterocycl. Chem., 62, 137 (1995); (b) A. J. Banister and J. M. Rawson, Some Synthetic and Structural Aspects of Dithiadiazoles, RCN2S2, and Related Compounds, in R. Steudel (ed.)

The Chemistry of Inorganic Heterocycles, Elsevier, pp. 323-348 (1992).

3.J. L. Morris and C. W. Rees, Chem. Soc. Rev., 15, 1 (1986).

4.T. Chivers, Sulfur-Nitrogen Heterocycles, in I. Haiduc and D. B. Sowerby (ed.)

The Chemistry of Inorganic Homoand Heterocycles, Academic Press, London, Vol. 2, pp. 793-870 (1987).

5.R. T. Oakley, Prog. Inorg. Chem., 36, 1 (1988).

6.R. T. Oakley, Can. J. Chem., 71, 1775 (1993).

7.T. Chivers, Sulfur-Nitrogen Compounds, in R. B. King (ed.) Encyclopedia of Inorganic Chemistry, 2nd Edition, John Wiley & Sons Ltd., in press (2004).

8.A. J. Banister, I. May, J. M. Rawson and J. N. B. Smith, J. Organomet. Chem.,

550, 241 (1998).

9.R. T. Boeré and T. L. Roemmele, Coord. Chem. Rev., 210, 369 (2000).

10.A. W. Cordes, R. C. Haddon and R. T. Oakley, Heterocyclic Thiazyl and Selenazyl Radicals: Synthesis and Applications in Solid-State Architecture, in R. Steudel (ed.) The Chemistry of Inorganic Heterocycles, Elsevier, pp. 295-322 (1992).

11.J. M. Rawson and G. D. McManus, Coord. Chem. Rev., 189, 135 (1999).

12.J. M. Rawson and F. Palacio, Structure and Bonding, 100, 93 (2001).

Five-membered Carbon–Nitrogen–Chalcogen Ring Systems

233

13.E. Hey, C. Ergezinger and K. Dehnicke, Z. Naturforsch., 44B, 205 (1984).

14.(a) G. G. Alange, A. J. Banister, B. Bell and P. W. Millen, J. Chem. Soc., Perkin Trans. 1, 1192 (1979); (b) A. J. Banister, N. R. M. Smith and R. G. Hey, J. Chem. Soc., Perkin Trans. 1, 1181 (1983).

15.A. Apblett and T. Chivers, Inorg. Chem., 28, 4544 (1989).

16.P. Del Bel Belluz, A. W. Cordes, E. M. Kristof, P. V. Kristof, S. W. Liblong and

R.T. Oakley, J. Am. Chem. Soc., 111, 9276 (1989).

17.A. W. Cordes, R. C. Haddon, R. T. Oakley, L. F. Schneemeyer, J. V. Waszczak,

K.M. Young and N. M. Zimmerman, J. Am. Chem. Soc., 113, 582 (1991).

18.A. Amin and C. W. Rees, J. Chem. Soc., Perkin Trans. 1, 2495 (1989).

19.A. W. Cordes, C. D. Bryan, W. M. Davis, R. H. de Laat, S. H. Glarum. J. D. Goddard. R. C. Haddon. R. G. Hicks, D. K. Kennepohl, R. T. Oakley, S. R. Scott and N. P. C. Westwood, J. Am. Chem. Soc., 115, 7232 (1993).

20.M. P. Andrews, A. W. Cordes, D. C. Douglass, R. M. Fleming, S. H. Glarum, R. C. Haddon, P. Marsh, R. T. Oakley, T. T. M. Palstra, L. F. Schneemeyer, G. W. Trucks, R. R. Tycko, J. V. Waszczak, W. W. Warren, K. M. Young and N. M. Zimmerman, J. Am. Chem. Soc., 113, 3559 (1991).

21.A. W. Cordes, R. C. Haddon, R. G. Hicks, R. T. Oakley, T. T. M. Palstra, L. F. Schneemeyer and J. F. Waszczak, J. Am. Chem. Soc., 114, 5000 (1992).

22.A. W. Cordes, R. C. Haddon, R. G. Hicks, D. K. Kennepohl, R. T. Oakley, L. F. Schneemeyer and J. F. Waszczak Inorg. Chem., 32, 1554 (1993).

23.A. W. Cordes, C. M. Chamchoumis, R. G. Hicks, R. T. Oakley, K. M. Young and

R.C. Haddon, Can. J. Chem., 70, 919 (1992).

24.A. W. Cordes, R. C. Haddon, C. D. MacKinnon, R. T. Oakley, G. W. Patenaude,

R.W. Reed, T. Rietveld and K. E. Vajda, Inorg. Chem., 35, 7626 (1996).

25.C. D. Bryan, A. W. Cordes, R. C. Haddon, R. G. Hicks, R. T. Oakley, T. M. Palstra and A. J. Perel, J. Chem. Soc., Chem. Commun., 1447 (1994).

26.H.-U. Höfs, J. W. Bats, R. Gleiter, G. Hartmann, R. Mews, M. Eckert-0DNVLü

H.Oberhammer and G. M. Sheldrick, Chem. Ber., 118, 3781 (1985).

27.A. Vegas, A. Pérez-Salazar, A. J. Banister and R. G. Hey, J. Chem. Soc., Dalton Trans., 1812 (1980).

234

A Guide to Chalcogen–Nitrogen Chemistry

28.A. W. Cordes, J. D. Goddard, R. T. Oakley and N. P. C. Westwood, J. Am. Chem.. Soc., 111, 6147 (1989).

29.A. J. Banister, M. I. Hansford, Z. V. Hauptman, S. T. Wait and W. Clegg, J. Chem. Soc., Dalton Trans., 1705 (1989).

30.(a) A. D. Bond, D. A. Haynes, C. M. Pask and J. M. Rawson, J. Chem. Soc., Dalton Trans., 2522 (2002); (b) C. S. Clarke, S. I. Pascu and J. M. Rawson, Cryst. Eng. Commun., 79 (2004).

31.A. J. Banister, A. S. Batsanov, O. G. Dawe, P. L. Herbertson, J. A. K. Howard,

S.Lynn, I. May. J. N. B. Smith, J. M. Rawson, T. E. Rogers, B. K. Tanner,

G.Antorrena and F. Palacio, J. Chem. Soc., Dalton Trans., 2539 (1997).

32.A J. Banister, N. Bricklebank, I. Lavender, J. M. Rawson, C. I. Gregory, B. K. Tanner, W. Clegg, M. R. J. Elsegood and F. Palacio, Angew. Chem., Int. Ed. Engl.,

35, 2533 (1996).

33.G. Antorrena, J. E. Davies, M. Hartley, F. Palacio, J. M. Rawson, J. N. B. Smith and A. Steiner, Chem. Commun., 1394 (1999).

34.(a) W. V. F. Brooks, N. Burford, J. Passmore, M. J. Schriver and L. H. Sutcliffe,

J.Chem. Soc., Chem. Commun., 69 (1987); (b) H. Du, R. C. Haddon. I. Krossing,

J.Passmore, J. M. Rawson and M. J. Schriver, Chem. Commun., 1836 (2002).

35.C. S. Clarke, D. A. Haynes, J. M. Rawson and A. D. Bond, Chem. Commun., 2774 (2003).

36.A. W. Cordes, R. C. Haddon, R. G. Hicks, R. T. Oakley and T. T. M. Palstra,

Inorg. Chem., 31, 1802 (1992).

37.W. M. Davis, R. G. Hicks, R. T. Oakley, B. Zhao and N. J. Taylor, Can. J. Chem.,

71, 180 (1993).

38.W. M. Davis and J. D. Goddard, Can. J. Chem., 74, 810 (1996).

39.C. D. Bryan, A. W. Cordes, R. M. Fleming, N. A. George, S. H. Glarum, R. C. Haddon, R. T. Oakley, T. T. M. Palstra, A. S. Perel, L. F. Schneemeyer and J. V. Waszczak, Nature, 365, 821 (1993).

40.C. D. Bryan, A. W. Cordes, R. C. Haddon, R. G. Hicks, D. K. Kennepohl, C. D.

MacKinnon, R. T. Oakley, T. T. M. Palstra, A. S. Perel, S. R. Scott, L. F.

Schneemeyer and J. V. Waszczak, J. Am. Chem. Soc., 116, 1205 (1994).

Five-membered Carbon–Nitrogen–Chalcogen Ring Systems

235

41.C. D. Bryan, A. W. Cordes, R. M. Fleming, N. A. George, S. H. Glarum, R. C. Haddon, C. D. MacKinnon, R. T. Oakley, T. T. M. Palstra and A. S. Perel, J. Am. Chem. Soc., 117, 6880 (1995).

42.C. D. Bryan, A. W. Cordes, J. D. Goddard, R. C. Haddon, R. G. Hicks, C. D. MacKinnon, R. C. Mawhinney, R. T. Oakley, T. T. M. Palstra and A. S. Perel,

J.Am. Chem. Soc., 118, 330 (1996).

43.A. W. Cordes, N. A. George, R. C. Haddon, D. K. Kennepohl, R. T. Oakley, T. T.

M.Palstra and R. W. Reed, Chem. Mater., 8, 2774 (1996).

44.R. T. Boeré and K. H. Moock, J. Am. Chem. Soc., 117, 4755 (1995).

45.J. Campbell, D. Klapstein, P. F. Bernath, W. M. Davis, R. T. Oakley and J. D. Goddard, Inorg. Chem., 35, 4264 (1996).

46.M. Mito, T. Kawae, K. Takeda, S. Takagi, Y. Matsushita, H. Deguchi, J. M. Rawson and F. Palacio, Polyhedron, 20, 1509 (2001).

47.A. Alberola, R. J. Lees, C. M. Pask, J. M. Rawson, F. Palacio, P. Oliete,

C.Paulsen, A. Yamaguchi, R. D. Farley and D. M. Murphy, Angew. Chem., Int. Ed. Engl., 42, 4782 (2003).

48.P. J. Alonso, G. Antorrena, J. I. Martinez, J. J. Novoa, F. Palacio, J. M. Rawson and

J.N. B. Smith. Appl. Mag. Reson., 20, 231 (2001).

49.C. M. Aherne, A. J. Banister, I. B. Gorrell, M. I. Hansford, Z. V. Hauptman, A. W. Luke and J. M. Rawson, J. Chem. Soc., Dalton Trans., 967 (1993).

50.A. J. Banister, I. B. Gorrell, J. A. K. Howard, S. E. Lawrence, C. W. Lehman,

I.May, J. M. Rawson, B. K. Tanner, C. I. Gregory, A. J. Blake and S. P. Fricker,

J.Chem. Soc., Dalton Trans., 377 (1997).

51.A. J. Banister, I. B. Gorrell, S. E. Lawrence, C. W. Lehmann, I. May, G. Tait, A. J. Blake and J. M. Rawson, J. Chem. Soc., Chem. Commun., 1779 (1994).

52.A. J. Banister, I. B. Gorrell, W. Clegg and K. A. Jorgensen, J. Chem. Soc., Dalton Trans., 1105 (1991).

53.R. T. Boeré, K. H. Moock, V. Klassen, J. Weaver, D. Lentz, and H. MichaelSchultz, Can. J. Chem., 73, 1444 (1995).

54.W-K. Wong, C. Sun, W-Y. Wong, D. W. J. Kwong and W-T. Wong, Eur. J. Inorg. Chem., 1045 (2000).

236

A Guide to Chalcogen–Nitrogen Chemistry

55.N. G. R. Hearns, K. E. Preuss, J. F. Richardson and S. Bin-Salamon, J. Am. Chem., Soc., 126, Published on-line July 23 (2004).

56.A. J. Banister, W. Clegg, Z. V. Hauptmann, A. W. Luke and S. T. Wait, J. Chem. Soc., Chem. Commun., 351 (1989).

57.(a) N. Adamson, A. J. Banister, I. B. Gorrell, A. W. Luke and J. M. Rawson,

J.Chem. Soc., Chem. Commun., 919 (1993); (b) A. J. Banister, M. I. Hansford,

Z.V. Hauptmann, S. T. Wait and W. Clegg, J. Chem. Soc., Chem. Commun., 1705 (1989).

58.(a) G. K. MacLean, J. Passmore, M. N. S. Rao, M. J. Schriver, P. S. White,

D.Bethell, R. S. Pilkington and L. H. Sutcliffe, J. Chem. Soc., Dalton Trans., 1405 (1985); (b) S. Parsons and J. Passmore, Acc. Chem. Res., 27, 101 (1994).

59.A. J. Banister, J. M. Rawson, W. Clegg and S. L. Birkby, J. Chem. Soc., Dalton Trans., 1099 (1991).

60.S. Parsons, J. Passmore, M. J. Schriver and P. S. White, J. Chem. Soc., Chem. Commun., 369 (1991).

61.A. J. Banister, I. Lavender, J. M. Rawson and W. Clegg, J. Chem. Soc., Dalton Trans., 859 (1992).

62.J. Jacobs, S. E. Ulic, H. Willner, G. Schatte, J. Passmore, S. V. Sereda and T. S. Cameron, J. Chem. Soc., Dalton Trans., 383 (1996).

63.(a) A. J. Banister, I. Lavender, S. E. Lawrence, J. M. Rawson and W. Clegg,

J.Chem. Soc., Chem. Commun., 29 (1994); (b) C. M. Aherne, A. J. Banister,

I.Lavender, S. E. Lawrence and J. M. Rawson, Polyhedron, 15, 1877 (1996).

64.A. J. Banister, I. Lavender, J. M. Rawson and R. J. Whitehead, J. Chem. Soc., Dalton Trans., 1449 (1992).

65.K. B. Borisenko, M. Broschag. I. Hargittai. T. M. Klapötke, D. Schröder,

A.Schulz, H. Schwarz, I. C. Tornieporth-Oetting and P. S. White, J. Chem. Soc., Dalton Trans., 2705 (1994).

66.C. Aherne, A. J. Banister, A. W. Luke, J. M. Rawson and R. J. Whitehead,

J.Chem. Soc., Dalton Trans., 1277 (1992).

67.J. Passmore and X. Sun, Inorg. Chem. 35, 1313 (1996).

Five-membered Carbon–Nitrogen–Chalcogen Ring Systems

237

68.G. Antorrena, S. Brownridge, T. S. Cameron, R. Palacio, S. Parsons, J. Passmore,

L.K. Thompson and F. Zarlaida, Can. J. Chem., 80, 1568 (2002).

69.H. W. Roesky and E. Wehner, Angew. Chem., Int. Ed. Eng., 14, 498 (1975).

70.R. Neidlein, P. Leinberger, A. Gieren and B. Dederer, Chem. Ber., 111, 698 (1978).

71.(a) H. W. Roesky, E. Wehner, E. J. Zehnder, H. J. Deiseroth and A. Simon, Chem. Ber., 111, 1670 (1978); (b) J. Van Droogenbroeck, K. Tersago. C. Van Alsenoy,

S.M. Aucott, H. L. Milton, J. D. Woollins and F. Blockhuis, Eur. J. Inorg. Chem., Published on-line July 22 (2004).

72.R.H. Delaat, L. Durham, E. G. Livingstone and N. P. C. Westwood, J. Phys. Chem., 97, 11216 (1993).

73.T. S. Cameron, R. C. Haddon, S. M. Mattar, S. Parsons, J. Passmore and

A.Ramirez, Inorg. Chem., 31, 2274 (1992).

74.P. D. Boyle, S. Parsons, J. Passmore and D. J. Wood, J. Chem. Soc., Chem. Commun., 199 (1993).

75.L. I. Khmelnitski and O. A. Rakitin, in A. R. Katritzky, C. W. Rees and E. F. V. Scriven (ed.) Comprehensive Heterocyclic Chemistry, Vol. II, Pergamon, Oxford, p. 916 (1996).

76.Y. Inagaki, R. Okazaki, and N. Inamoto, Bull. Chem. Soc. Jpn., 52, 1998 (1979).

77.L. D. Huestis, M. L. Walsh and N. Hahn, J. Org. Chem., 30, 2763 (1965).

78.T. M. Barclay, A. W. Cordes, J. D. Goddard, R. C. Mawhinney, R. T. Oakley, K. E. Preuss and R. W. Reed, J. Am. Chem. Soc., 119, 12136 (1997).

79.L. Beer, J. L. Brusso, A. W. Cordes, R. C. Haddon, M. E. Itkis, K. Kirschbaum,

D.S. MacGregor, R. T. Oakley, A. A. Pinkerton and R. W. Reed, J. Am. Chem. Soc., 124, 9498 (2002).

80.(a) G. Wolmershäuser, M. Schnauber and T. Wilhelm, J. Chem. Soc., Chem..

Commun., 573 (1984); (b) G. Heckmann, R. Johann, G. Kraft and

G. Wolmershäuser, Synth. Met. 41-43, 3287 (1991).

81.T. M. Barclay, A. W. Cordes, R. H. de Laat, J. D. Goddard, R. C. Haddon, D. Y. Jeter, R. C. Mawhinney, R. T. Oakley, T. T. M. Palstra, G. W. Patenaude, R. W. Reed, and N. P. C. Westwood, J. Am. Chem. Soc., 119, 2633 (1997).

82.A. W. Cordes, R. C. Haddon and R. T. Oakley, Adv. Mater., 6, 798 (1994).

238

A Guide to Chalcogen–Nitrogen Chemistry

83.T. M. Barclay, L. Beer, A. W. Cordes, R. T. Oakley, K. E. Preuss, N. J. Taylor and

R.W. Reed, J. Chem. Soc., Chem. Commun., 531 (1999).

84.T. M. Barclay, A. A. Cordes, R. C. Haddon, M. E. Itkis, R. T. Oakley, R. W. Reed and H. Zhang, J. Amer. Chem. Soc., 121, 969 (1999).

85.G. Wolmerhäuser and G. Kraft, Chem. Ber., 123, 881 (1990).

86.(a) E. G. Awere, N. Burford, R. C. Haddon, S. Parsons, J. Passmore, J. Waszczak and P. S. White, Inorg. Chem., 29, 4821 (1990): (b) E. G. Awere, N. Burford,

C.Mailer, J. Passmore, M. J. Schriver, P. S. White, A. J. Banister, H. Oberhammer and L. H. Sutcliffe, J. Chem. Soc., Chem. Commun., 66 (1987).

87.T. M. Barclay, A. W. Cordes, N. A. George, R. C. Haddon, R. T. Oakley, T. T. M. Palstra, G. W. Patenaude, R. W. Reed, J. F. Richardson and H. Zhang, J. Chem. Soc., Chem. Commun., 873 (1997).

88.W. Fujita and K. Awaga, Science, 286, 261 (1999).

89.T. M. Barclay, A. W. Cordes, N. A. George, R. C. Haddon, M. E. Itkis, M. S. Mashuta, R. T. Oakley, G. W. Patenuade, R. W. Reed, J. F. Richardson and

H.Zhang, J. Am. Chem. Soc., 120, 352 (1998).

90.G. D. McManus, J. M. Rawson, N. Feeder, F. Palacio and P. Oliete, J. Mater. Chem., 10, 2001 (2000).

91.M. E. Itkis, X. Chi, A. W. Cordes and R. C. Haddon, Science, 296, 1443 (2002).

92.G. D. McManus, J. M. Rawson, N. Feeder, J. van Duijn, E. J. L. McInnes, J. J. Novoa, R. Burrriel, F. Palacio and P. Oliete, J. Mater. Chem., 11, 1992 (2001).

93.J. L. Brusso, O. P. Clements, R. C. Haddon, M. E. Itkis, A. A. Leitch, R. T. Oakley,

R.W. Reed and J. F. Richardson, J. Am. Chem. Soc., 126, published on-line June 15 (2004).

94.T.L. Gilchrist, Heterocyclic Chemistry, Pitman, London (1985).

95.S. T. A. K. Daley and C. W. Rees, J. Chem. Soc., Perkin Trans. 1, 207 (1987).

96.J. F. Alicina and J. A. Kowald, in D. L. Klayman and W. H. Günther (ed) Organic Selenium Compounds: Their Chemistry and Biology, John Wiley & Sons, Ch. 17, pp. 1050-1081 (1973).

Five-membered Carbon–Nitrogen–Chalcogen Ring Systems

239

97.(a) L. M. Weinstock, P. Davis, D. M. Mulvey and J. C. Schaeffer, Angew. Chem., Int. Ed. Engl., 6, 364 (1967); (b) V. Bertini, Angew. Chem., Int. Ed. Engl., 6, 563 (1967).

98.V. Bertini and F. Lucchesini, Synthesis, 681 (1982).

99.V. N. Kovtonyuk, A. Yu. Makarov, M. M. Shakirov and A. V. Zibarev, Chem. Commun., 1991 (1996).

100.T. Chivers, X. Gao and M. Parvez, Inorg. Chem., 35, 9 (1996).

101.H. W. Roesky, K.-L. Weber, U. Seseke, W. Pinkert, M. Noltemeyer, W. Clegg and G. M. Sheldrick, J. Chem. Soc., Dalton Trans., 565 (1985).

102.V. Bertini, P. Dapporto, F. Lucchesini, A. Sega and A. De Munno, Acta Crystallogr., C40, 653 (1984).

103.M. Björgvinsson and H. W. Roesky, Polyhedron, 10, 2353 (1991).

104. M. Gieren, H. Beta, T. Hübner, V. Lamm, R. Neidlein and D. Droste,

Z.Naturforsch., 39B, 485 (1984).

105.M. H. Palmer and S. M. F. Kennedy, J. Mol. Struct. 43, 33 (1978).

106.W. G. Salmond, Quart. Rev., 22, 253 (1968).

107.A. Apblett, T. Chivers and J. F. Richardson, Can. J. Chem., 64, 849 (1986).

108.J. Kuyper and K. Vrieze, J. Organomet. Chem., 86, 127 (1975).

109.R. Meij, T. A. M. Kaandorp, D. J. Stufkens and K. Vrieze, J. Organomet. Chem.,

128, 203 (1977).

110.W. Kaim and S. Kohlman, Inorg. Chim. Acta, 101, L21 (1985).

111.H. W. Roesky, T. Gries, H. Hofmann, J. Schimkowiak, P. G. Jones, K. Meyer-Bäse and G. M. Sheldrick, Chem. Ber., 119, 366 (1986).

112.V. A. Bakulev and W. Dehaen, The Chemistry of 1,2,3-Thiadiazoles. The Chemistry of Heterocyclic Compounds, Vol. 62, John Wiley and Sons Inc., Hoboken, N. J. (2004).

113.P. K. Khanna, C. P. Morley, R. M. Gorte, R. Gokhale, V. V. V. S. Subbarao and

C.Satyanarayana, Mater. Chem. Phys., 83, 323 (2004).

Chapter 12

Six-membered and Larger Carbon–Nitrogen–

Chalcogen Ring Systems

12.1 Introduction

This chapter is a continuation of the preceding discussion of fivemembered carbon–nitrogen–chalcogen ring systems, which is now extended to include heterocycles with six or more atoms in the ring, as well as bicyclic systems. The isolobal relationship between an RC unit and S+ as a substituent in a sulfur-nitrogen ring is still apposite (Section 4.5). Thus, a number of these larger neutral heterocycles have isoelectronic analogues among the cyclic binary S–N cations described in Chapter 5. This class of chalcogen–nitrogen heterocycles embodies neutral radical systems that engage in intermolecular Œ*– Œ* interactions, as well as cyclic systems that exhibit weak transannular S•••S (Œ*– Œ*) interactions. The chapter is sub-divided into sections according to increasing ring size. Within each section, ring systems that incorporate two-coordinate sulfur (or selenium) will be discussed first followed by those which contain three or four-coordinate sulfur. Detailed accounts of some of the early aspects of the chemistry of these heterocycles can be found in several review articles.1-3

240

Соседние файлы в предмете Химия