
- •Foreword
- •Preface
- •Contents
- •Introduction
- •Oren M. Becker
- •Alexander D. MacKerell, Jr.
- •Masakatsu Watanabe*
- •III. SCOPE OF THE BOOK
- •IV. TOWARD A NEW ERA
- •REFERENCES
- •Atomistic Models and Force Fields
- •Alexander D. MacKerell, Jr.
- •II. POTENTIAL ENERGY FUNCTIONS
- •D. Alternatives to the Potential Energy Function
- •III. EMPIRICAL FORCE FIELDS
- •A. From Potential Energy Functions to Force Fields
- •B. Overview of Available Force Fields
- •C. Free Energy Force Fields
- •D. Applicability of Force Fields
- •IV. DEVELOPMENT OF EMPIRICAL FORCE FIELDS
- •B. Optimization Procedures Used in Empirical Force Fields
- •D. Use of Quantum Mechanical Results as Target Data
- •VI. CONCLUSION
- •REFERENCES
- •Dynamics Methods
- •Oren M. Becker
- •Masakatsu Watanabe*
- •II. TYPES OF MOTIONS
- •IV. NEWTONIAN MOLECULAR DYNAMICS
- •A. Newton’s Equation of Motion
- •C. Molecular Dynamics: Computational Algorithms
- •A. Assigning Initial Values
- •B. Selecting the Integration Time Step
- •C. Stability of Integration
- •VI. ANALYSIS OF DYNAMIC TRAJECTORIES
- •B. Averages and Fluctuations
- •C. Correlation Functions
- •D. Potential of Mean Force
- •VII. OTHER MD SIMULATION APPROACHES
- •A. Stochastic Dynamics
- •B. Brownian Dynamics
- •VIII. ADVANCED SIMULATION TECHNIQUES
- •A. Constrained Dynamics
- •C. Other Approaches and Future Direction
- •REFERENCES
- •Conformational Analysis
- •Oren M. Becker
- •II. CONFORMATION SAMPLING
- •A. High Temperature Molecular Dynamics
- •B. Monte Carlo Simulations
- •C. Genetic Algorithms
- •D. Other Search Methods
- •III. CONFORMATION OPTIMIZATION
- •A. Minimization
- •B. Simulated Annealing
- •IV. CONFORMATIONAL ANALYSIS
- •A. Similarity Measures
- •B. Cluster Analysis
- •C. Principal Component Analysis
- •REFERENCES
- •Thomas A. Darden
- •II. CONTINUUM BOUNDARY CONDITIONS
- •III. FINITE BOUNDARY CONDITIONS
- •IV. PERIODIC BOUNDARY CONDITIONS
- •REFERENCES
- •Internal Coordinate Simulation Method
- •Alexey K. Mazur
- •II. INTERNAL AND CARTESIAN COORDINATES
- •III. PRINCIPLES OF MODELING WITH INTERNAL COORDINATES
- •B. Energy Gradients
- •IV. INTERNAL COORDINATE MOLECULAR DYNAMICS
- •A. Main Problems and Historical Perspective
- •B. Dynamics of Molecular Trees
- •C. Simulation of Flexible Rings
- •A. Time Step Limitations
- •B. Standard Geometry Versus Unconstrained Simulations
- •VI. CONCLUDING REMARKS
- •REFERENCES
- •Implicit Solvent Models
- •II. BASIC FORMULATION OF IMPLICIT SOLVENT
- •A. The Potential of Mean Force
- •III. DECOMPOSITION OF THE FREE ENERGY
- •A. Nonpolar Free Energy Contribution
- •B. Electrostatic Free Energy Contribution
- •IV. CLASSICAL CONTINUUM ELECTROSTATICS
- •A. The Poisson Equation for Macroscopic Media
- •B. Electrostatic Forces and Analytic Gradients
- •C. Treatment of Ionic Strength
- •A. Statistical Mechanical Integral Equations
- •VI. SUMMARY
- •REFERENCES
- •Steven Hayward
- •II. NORMAL MODE ANALYSIS IN CARTESIAN COORDINATE SPACE
- •B. Normal Mode Analysis in Dihedral Angle Space
- •C. Approximate Methods
- •IV. NORMAL MODE REFINEMENT
- •C. Validity of the Concept of a Normal Mode Important Subspace
- •A. The Solvent Effect
- •B. Anharmonicity and Normal Mode Analysis
- •VI. CONCLUSIONS
- •ACKNOWLEDGMENT
- •REFERENCES
- •Free Energy Calculations
- •Thomas Simonson
- •II. GENERAL BACKGROUND
- •A. Thermodynamic Cycles for Solvation and Binding
- •B. Thermodynamic Perturbation Theory
- •D. Other Thermodynamic Functions
- •E. Free Energy Component Analysis
- •III. STANDARD BINDING FREE ENERGIES
- •IV. CONFORMATIONAL FREE ENERGIES
- •A. Conformational Restraints or Umbrella Sampling
- •B. Weighted Histogram Analysis Method
- •C. Conformational Constraints
- •A. Dielectric Reaction Field Approaches
- •B. Lattice Summation Methods
- •VI. IMPROVING SAMPLING
- •A. Multisubstate Approaches
- •B. Umbrella Sampling
- •C. Moving Along
- •VII. PERSPECTIVES
- •REFERENCES
- •John E. Straub
- •B. Phenomenological Rate Equations
- •II. TRANSITION STATE THEORY
- •A. Building the TST Rate Constant
- •B. Some Details
- •C. Computing the TST Rate Constant
- •III. CORRECTIONS TO TRANSITION STATE THEORY
- •A. Computing Using the Reactive Flux Method
- •B. How Dynamic Recrossings Lower the Rate Constant
- •IV. FINDING GOOD REACTION COORDINATES
- •A. Variational Methods for Computing Reaction Paths
- •B. Choice of a Differential Cost Function
- •C. Diffusional Paths
- •VI. HOW TO CONSTRUCT A REACTION PATH
- •A. The Use of Constraints and Restraints
- •B. Variationally Optimizing the Cost Function
- •VII. FOCAL METHODS FOR REFINING TRANSITION STATES
- •VIII. HEURISTIC METHODS
- •IX. SUMMARY
- •ACKNOWLEDGMENT
- •REFERENCES
- •Paul D. Lyne
- •Owen A. Walsh
- •II. BACKGROUND
- •III. APPLICATIONS
- •A. Triosephosphate Isomerase
- •B. Bovine Protein Tyrosine Phosphate
- •C. Citrate Synthase
- •IV. CONCLUSIONS
- •ACKNOWLEDGMENT
- •REFERENCES
- •Jeremy C. Smith
- •III. SCATTERING BY CRYSTALS
- •IV. NEUTRON SCATTERING
- •A. Coherent Inelastic Neutron Scattering
- •B. Incoherent Neutron Scattering
- •REFERENCES
- •Michael Nilges
- •II. EXPERIMENTAL DATA
- •A. Deriving Conformational Restraints from NMR Data
- •B. Distance Restraints
- •C. The Hybrid Energy Approach
- •III. MINIMIZATION PROCEDURES
- •A. Metric Matrix Distance Geometry
- •B. Molecular Dynamics Simulated Annealing
- •C. Folding Random Structures by Simulated Annealing
- •IV. AUTOMATED INTERPRETATION OF NOE SPECTRA
- •B. Automated Assignment of Ambiguities in the NOE Data
- •C. Iterative Explicit NOE Assignment
- •D. Symmetrical Oligomers
- •VI. INFLUENCE OF INTERNAL DYNAMICS ON THE
- •EXPERIMENTAL DATA
- •VII. STRUCTURE QUALITY AND ENERGY PARAMETERS
- •VIII. RECENT APPLICATIONS
- •REFERENCES
- •II. STEPS IN COMPARATIVE MODELING
- •C. Model Building
- •D. Loop Modeling
- •E. Side Chain Modeling
- •III. AB INITIO PROTEIN STRUCTURE MODELING METHODS
- •IV. ERRORS IN COMPARATIVE MODELS
- •VI. APPLICATIONS OF COMPARATIVE MODELING
- •VII. COMPARATIVE MODELING IN STRUCTURAL GENOMICS
- •VIII. CONCLUSION
- •ACKNOWLEDGMENTS
- •REFERENCES
- •Roland L. Dunbrack, Jr.
- •II. BAYESIAN STATISTICS
- •A. Bayesian Probability Theory
- •B. Bayesian Parameter Estimation
- •C. Frequentist Probability Theory
- •D. Bayesian Methods Are Superior to Frequentist Methods
- •F. Simulation via Markov Chain Monte Carlo Methods
- •III. APPLICATIONS IN MOLECULAR BIOLOGY
- •B. Bayesian Sequence Alignment
- •IV. APPLICATIONS IN STRUCTURAL BIOLOGY
- •A. Secondary Structure and Surface Accessibility
- •ACKNOWLEDGMENTS
- •REFERENCES
- •Computer Aided Drug Design
- •Alexander Tropsha and Weifan Zheng
- •IV. SUMMARY AND CONCLUSIONS
- •REFERENCES
- •Oren M. Becker
- •II. SIMPLE MODELS
- •III. LATTICE MODELS
- •B. Mapping Atomistic Energy Landscapes
- •C. Mapping Atomistic Free Energy Landscapes
- •VI. SUMMARY
- •REFERENCES
- •Toshiko Ichiye
- •II. ELECTRON TRANSFER PROPERTIES
- •B. Potential Energy Parameters
- •IV. REDOX POTENTIALS
- •A. Calculation of the Energy Change of the Redox Site
- •B. Calculation of the Energy Changes of the Protein
- •B. Calculation of Differences in the Energy Change of the Protein
- •VI. ELECTRON TRANSFER RATES
- •A. Theory
- •B. Application
- •REFERENCES
- •Fumio Hirata and Hirofumi Sato
- •Shigeki Kato
- •A. Continuum Model
- •B. Simulations
- •C. Reference Interaction Site Model
- •A. Molecular Polarization in Neat Water*
- •B. Autoionization of Water*
- •C. Solvatochromism*
- •F. Tautomerization in Formamide*
- •IV. SUMMARY AND PROSPECTS
- •ACKNOWLEDGMENTS
- •REFERENCES
- •Nucleic Acid Simulations
- •Alexander D. MacKerell, Jr.
- •Lennart Nilsson
- •D. DNA Phase Transitions
- •III. METHODOLOGICAL CONSIDERATIONS
- •A. Atomistic Models
- •B. Alternative Models
- •IV. PRACTICAL CONSIDERATIONS
- •A. Starting Structures
- •C. Production MD Simulation
- •D. Convergence of MD Simulations
- •WEB SITES OF INTEREST
- •REFERENCES
- •Membrane Simulations
- •Douglas J. Tobias
- •II. MOLECULAR DYNAMICS SIMULATIONS OF MEMBRANES
- •B. Force Fields
- •C. Ensembles
- •D. Time Scales
- •III. LIPID BILAYER STRUCTURE
- •A. Overall Bilayer Structure
- •C. Solvation of the Lipid Polar Groups
- •IV. MOLECULAR DYNAMICS IN MEMBRANES
- •A. Overview of Dynamic Processes in Membranes
- •B. Qualitative Picture on the 100 ps Time Scale
- •C. Incoherent Neutron Scattering Measurements of Lipid Dynamics
- •F. Hydrocarbon Chain Dynamics
- •ACKNOWLEDGMENTS
- •REFERENCES
- •Appendix: Useful Internet Resources
- •B. Molecular Modeling and Simulation Packages
- •Index

166 |
Hayward |
Figure 4 DynDom [67] analysis of the first two normal modes of human lysozyme. Dark grey and white indicate the two dynamic domains, separated by the black hinge bending region. The vertical line represents a hinge axis that produces a closure motion in the first normal mode. The horizontal line represents a hinge axis that produces a twisting motion in the second normal mode. (Adapted from Ref. 68.) The DynDom program is available from the Internet at http:/ /md. chem.rug.nl/ steve/dyndom.html.
of these applications its weaknesses, in comparison to other simulation techniques, appear still to be outweighed by its strengths.
ACKNOWLEDGMENT
I wish to thank Dr. Akio Kitao for reading the manuscript.
REFERENCES
1.N Go, T Noguti, T Nishikawa. Proc Natl Acad Sci USA 80:3696–3700, 1983.
2.M Levitt, C Sander, PS Stern. Int J Quant Chem: Quant Biol Symp 10:181–199, 1983.
3.B Brooks, M Karplus. Proc Natl Acad Sci USA 80:6571–6575, 1983.
4.O Marques, Y-H Sanejouand. Proteins 23:557–560, 1995.
5.J Ma, M Karplus. J Mol Biol 274:114–131, 1997.
6.A Thomas, MJ Field, D Perahia. J Mol Biol 261:490–506, 1996.
Normal Mode Analysis of Biological Molecules |
167 |
7.L Mouawad, D Perahia. J Mol Biol 258:393–410, 1996.
8.RH Austin, KW Beeson, L Eisenstein, H Frauenfelder, IC Gunsalus. Biochemistry 14(24): 5355–5373, 1975.
9.R Elber, M Karplus. Science 235:318–321, 1987.
10.D Janezic, RM Venable, BR Brooks. J Comput Chem 16:1554–1566, 1995.
11.S Hayward, A Kitao, N Go. Proteins 23:177–186, 1995.
12.BN Parlett. The Symmetric Eigenvalue Problem. Englewood Cliffs, NJ: Prentice-Hall, 1980.
13.BR Brooks, D Janezic, M Karplus. J Comput Chem 16(12):1522–1542, 1995.
14.J-F Gibrat, J Garnier, N Go. J Comput Chem 15(8):820–834, 1994.
15.B Brooks, M Karplus. Proc Natl Acad Sci USA 82:4995–4999, 1985.
16.L Mouawad, D Perahia. Biopolymers 33:599–611, 1993.
17.M Hao, SC Harvey. Biopolymers 32:1393–1405, 1992.
18.M Hao, HA Scheraga. Biopolymers 34:321–335, 1994.
19.P Durand, G Trinquier, Y-H Sanejouand. Biopolymers 34:759–771, 1994.
20.E Bright Wilson Jr, JC Decius, PC Cross. Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra. New York: McGraw-Hill, 1955.
21.B Roux, M Karplus. Biophys J 53:297–309, 1988.
22.T Simonson, D Perahia. Biophys J 61:410–427, 1992.
23.D Lin, A Matsumoto, N Go. J Chem Phys 107(9):3684–3690, 1997.
24.T Noguti, N Go. J Phys Soc(Jpn) 52(10):3685–3690, 1983.
25.A Kitao, N Go. J Comput Chem 12(3):359–368, 1991.
26.A Kitao, S Hayward, N Go. Biophys Chem 52:107–114, 1994.
27.S Sunada, N Go. J Comput Chem 16(3):328–336, 1995.
28.S Sunada, N Go, P Koehl. J Chem Phys 104(12):4768–4775, 1996.
29.T Nishikawa, N Go. Proteins 2:308–329, 1987.
30.M Levitt, C Sander, PS Stern. J Mol Biol 181:423–447, 1985.
31.D Janezic, BR Brooks. J Comput Chem 16(12):1543–1553, 1995.
32.N Go. Biophys Chem 35:105–112, 1990.
33.A Kidera, K Inaka, M Matsushima, N Go. J Mol Biol 225:477–486, 1992.
34.T Horiuchi, N Go. Proteins 10:106–116, 1991.
35.J-F Gibrat, N Go. Proteins 8:258–279, 1990.
36.MM Tirion, D ben-Avraham. J Mol Biol 230:186–195, 1993.
37.T Yamato, J Higo, N Go. Proteins 16:327–340, 1993.
38.Y Seno, N Go. J Mol Biol 216:95–109, 1990.
39.Y Seno, N Go. J Mol Biol 216:111–126, 1990.
40.T Ikura, N Go. Proteins 16:423–436, 1993.
41.H Wako, M Tachikawa, A Ogawa. Proteins 26:72–80, 1996.
42.H Ishida, Y Jochi, A Kidera. Proteins 32:324–333, 1998.
43.S Nakamura, J Doi. Nucleic Acids Res 22(3):514–521, 1994.
44.M Tomimoto, N Go, H Wako. J Comput Chem 17(7):910–917, 1996.
45.MM Tirion. Phys Rev Lett 77(9):1905–1908, 1996.
46.I Bahar, AR Atilgan, B Erman. Folding Des 2:173–181, 1997.
47.A Kidera, N Go. Proc Natl Acad Sci USA 87:3718–3722, 1990.
48.A Kidera, N Go. J Mol Biol 225:457–475, 1992.
49.R Diamond. Acta Cryst A46:425–435, 1990.
50.R Brueschweiler, DA Case. Phys Rev Lett 72(6):940–943, 1994.
51.A Kidera, K Inaka, M Matsushima, N Go. Protein Sci 3:92–102, 1994.
52.A Kitao, F Hirata, N Go. Chem Phys 158:447–472, 1991.
53.S Hayward, A Kitao, F Hirata, N Go. J Mol Biol 234:1207–1217, 1993.
54.A Kitao, F Hirata, N Go. J Phys Chem 97:10231–10235, 1993.
55.G Lamm, A Szabo. J Chem Phys 85(12):7334–7348, 1986.
56.J Kottalam, DA Case. Biopolymers 29:1409–1421, 1990.
168 |
Hayward |
57.J Smith, S Cusak, B Tidor, M Karplus. J Chem Phys 93(5):2974–2991, 1990.
58.JC Smith. Quart Rev Biophys 24(3):227–291, 1991.
59.JE Straub, D Thirumalai. Proc Natl Acad Sci USA 90:809–813, 1993.
60.JE Straub, J-K Choi. J Phys Chem 98(42):10978–10987, 1994.
61.A Kitao, S Hayward, N Go. Proteins, 33:496–517, 1998.
62.AE Garcia. Phys Rev Lett 68(17):2696–2699, 1992.
63.A Amadei, ABM Linssen, HJC Berendsen. Proteins 17:412–425, 1993.
64.S Hayward, N Go. Annu Rev Phys Chem 46:223–250, 1995.
65.G Basu, A Kitao, A Kuki, N Go. J Phys Chem B 102:2076–2084, 1998.
66.G Basu, A Kitao, A Kuki, N Go. J Phys Chem B 102:2085–2094, 1998.
67.S Hayward, HJC Berendsen. Proteins 30:144–154, 1998.
68.S Hayward, A Kitao, HJC Berendsen. Proteins 27:425–437, 1997.