Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Becker O.M., MacKerell A.D., Roux B., Watanabe M. (eds.) Computational biochemistry and biophysic.pdf
Скачиваний:
72
Добавлен:
15.08.2013
Размер:
5.59 Mб
Скачать

166

Hayward

Figure 4 DynDom [67] analysis of the first two normal modes of human lysozyme. Dark grey and white indicate the two dynamic domains, separated by the black hinge bending region. The vertical line represents a hinge axis that produces a closure motion in the first normal mode. The horizontal line represents a hinge axis that produces a twisting motion in the second normal mode. (Adapted from Ref. 68.) The DynDom program is available from the Internet at http:/ /md. chem.rug.nl/ steve/dyndom.html.

of these applications its weaknesses, in comparison to other simulation techniques, appear still to be outweighed by its strengths.

ACKNOWLEDGMENT

I wish to thank Dr. Akio Kitao for reading the manuscript.

REFERENCES

1.N Go, T Noguti, T Nishikawa. Proc Natl Acad Sci USA 80:3696–3700, 1983.

2.M Levitt, C Sander, PS Stern. Int J Quant Chem: Quant Biol Symp 10:181–199, 1983.

3.B Brooks, M Karplus. Proc Natl Acad Sci USA 80:6571–6575, 1983.

4.O Marques, Y-H Sanejouand. Proteins 23:557–560, 1995.

5.J Ma, M Karplus. J Mol Biol 274:114–131, 1997.

6.A Thomas, MJ Field, D Perahia. J Mol Biol 261:490–506, 1996.

Normal Mode Analysis of Biological Molecules

167

7.L Mouawad, D Perahia. J Mol Biol 258:393–410, 1996.

8.RH Austin, KW Beeson, L Eisenstein, H Frauenfelder, IC Gunsalus. Biochemistry 14(24): 5355–5373, 1975.

9.R Elber, M Karplus. Science 235:318–321, 1987.

10.D Janezic, RM Venable, BR Brooks. J Comput Chem 16:1554–1566, 1995.

11.S Hayward, A Kitao, N Go. Proteins 23:177–186, 1995.

12.BN Parlett. The Symmetric Eigenvalue Problem. Englewood Cliffs, NJ: Prentice-Hall, 1980.

13.BR Brooks, D Janezic, M Karplus. J Comput Chem 16(12):1522–1542, 1995.

14.J-F Gibrat, J Garnier, N Go. J Comput Chem 15(8):820–834, 1994.

15.B Brooks, M Karplus. Proc Natl Acad Sci USA 82:4995–4999, 1985.

16.L Mouawad, D Perahia. Biopolymers 33:599–611, 1993.

17.M Hao, SC Harvey. Biopolymers 32:1393–1405, 1992.

18.M Hao, HA Scheraga. Biopolymers 34:321–335, 1994.

19.P Durand, G Trinquier, Y-H Sanejouand. Biopolymers 34:759–771, 1994.

20.E Bright Wilson Jr, JC Decius, PC Cross. Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra. New York: McGraw-Hill, 1955.

21.B Roux, M Karplus. Biophys J 53:297–309, 1988.

22.T Simonson, D Perahia. Biophys J 61:410–427, 1992.

23.D Lin, A Matsumoto, N Go. J Chem Phys 107(9):3684–3690, 1997.

24.T Noguti, N Go. J Phys Soc(Jpn) 52(10):3685–3690, 1983.

25.A Kitao, N Go. J Comput Chem 12(3):359–368, 1991.

26.A Kitao, S Hayward, N Go. Biophys Chem 52:107–114, 1994.

27.S Sunada, N Go. J Comput Chem 16(3):328–336, 1995.

28.S Sunada, N Go, P Koehl. J Chem Phys 104(12):4768–4775, 1996.

29.T Nishikawa, N Go. Proteins 2:308–329, 1987.

30.M Levitt, C Sander, PS Stern. J Mol Biol 181:423–447, 1985.

31.D Janezic, BR Brooks. J Comput Chem 16(12):1543–1553, 1995.

32.N Go. Biophys Chem 35:105–112, 1990.

33.A Kidera, K Inaka, M Matsushima, N Go. J Mol Biol 225:477–486, 1992.

34.T Horiuchi, N Go. Proteins 10:106–116, 1991.

35.J-F Gibrat, N Go. Proteins 8:258–279, 1990.

36.MM Tirion, D ben-Avraham. J Mol Biol 230:186–195, 1993.

37.T Yamato, J Higo, N Go. Proteins 16:327–340, 1993.

38.Y Seno, N Go. J Mol Biol 216:95–109, 1990.

39.Y Seno, N Go. J Mol Biol 216:111–126, 1990.

40.T Ikura, N Go. Proteins 16:423–436, 1993.

41.H Wako, M Tachikawa, A Ogawa. Proteins 26:72–80, 1996.

42.H Ishida, Y Jochi, A Kidera. Proteins 32:324–333, 1998.

43.S Nakamura, J Doi. Nucleic Acids Res 22(3):514–521, 1994.

44.M Tomimoto, N Go, H Wako. J Comput Chem 17(7):910–917, 1996.

45.MM Tirion. Phys Rev Lett 77(9):1905–1908, 1996.

46.I Bahar, AR Atilgan, B Erman. Folding Des 2:173–181, 1997.

47.A Kidera, N Go. Proc Natl Acad Sci USA 87:3718–3722, 1990.

48.A Kidera, N Go. J Mol Biol 225:457–475, 1992.

49.R Diamond. Acta Cryst A46:425–435, 1990.

50.R Brueschweiler, DA Case. Phys Rev Lett 72(6):940–943, 1994.

51.A Kidera, K Inaka, M Matsushima, N Go. Protein Sci 3:92–102, 1994.

52.A Kitao, F Hirata, N Go. Chem Phys 158:447–472, 1991.

53.S Hayward, A Kitao, F Hirata, N Go. J Mol Biol 234:1207–1217, 1993.

54.A Kitao, F Hirata, N Go. J Phys Chem 97:10231–10235, 1993.

55.G Lamm, A Szabo. J Chem Phys 85(12):7334–7348, 1986.

56.J Kottalam, DA Case. Biopolymers 29:1409–1421, 1990.

168

Hayward

57.J Smith, S Cusak, B Tidor, M Karplus. J Chem Phys 93(5):2974–2991, 1990.

58.JC Smith. Quart Rev Biophys 24(3):227–291, 1991.

59.JE Straub, D Thirumalai. Proc Natl Acad Sci USA 90:809–813, 1993.

60.JE Straub, J-K Choi. J Phys Chem 98(42):10978–10987, 1994.

61.A Kitao, S Hayward, N Go. Proteins, 33:496–517, 1998.

62.AE Garcia. Phys Rev Lett 68(17):2696–2699, 1992.

63.A Amadei, ABM Linssen, HJC Berendsen. Proteins 17:412–425, 1993.

64.S Hayward, N Go. Annu Rev Phys Chem 46:223–250, 1995.

65.G Basu, A Kitao, A Kuki, N Go. J Phys Chem B 102:2076–2084, 1998.

66.G Basu, A Kitao, A Kuki, N Go. J Phys Chem B 102:2085–2094, 1998.

67.S Hayward, HJC Berendsen. Proteins 30:144–154, 1998.

68.S Hayward, A Kitao, HJC Berendsen. Proteins 27:425–437, 1997.