Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Chemiluminescence in Analytical Chemistry

.pdf
Скачиваний:
280
Добавлен:
15.08.2013
Размер:
5.81 Mб
Скачать

586

Zhang et al.

[93]. The sensor was stable up to 2 weeks and could be easily regenerated in water making it suitable for use in fermentation industries.

Table 2 lists some typical examples of non-enzyme-based CL sensors.

5. CL IMMUNOSENSORS

In immunoassays the main advantages of CL as a detection principle are the high sensitivity and rapidity of measurement without lengthy incubations. These advantages are more than potential so as to design a CL immunosensor. Aizawa [94] reported on a fiberoptic CL immunosensor by using an aromatic hydrocarbon and enzyme as labeling agents. The antibody was not directly immobilized on an optical fiber. Hara et al. [95] developed a fiberoptic immunosensor by immobilizing the antibody on an optical fiber. A metal-complex compound iron(III)- 2,9,16,23-tetrakis(chlorocarbonyl) phthalocyanine [TCCP-Fe(III)] was used as a CL catalyst. Competitive immunoassay was carried out by immersing the end of the optical fiber in a solution of human serum albumin (HSA) complexed with the metal complex. The flow rates for phosphate buffer, H2O2, and luminol were 1.50, 0.25, and, 0.25 mL/min, respectively. The HSA was determined in the 0.1– 100-mg/L concentration range, with a detection limit of 40 pg. The selectivity can be improved by utilization of a monoclonal antibody. A schematic flow diagram of a fiberoptic immunosensor designed by Hara et al. [95] is illustrated in Figure 6.

Zhang et al. [96] developed a FIA-CL immunosensor by immobilizing antibody on controlled pore glass filled into a column (0.2 5 cm). With this method, the time required per assay was 20 min compared to 20 h with conventional enzyme-linked immunosorbent assay (ELISA). Moreover, the whole assay could be proceeded automatically by control through a microprocessor. The technique was used for determination of hepatitis B surface antigen (HBsAg) in serum. Gatto-Menking et al. [97] developed an immunomagnetic ECL sensor for sensitive detection of biotoxoid and bacterial spores based on the CL from the ruthenium(III) trisbipyridal chelate-labeled reporter antibodies induced by a potential of 650–800 V. Detection limits of the order of fg were achieved for botulinus A, cholera β subunit, ricin, and staphylococcal enterotoxoid B.

Starodub et al. [98] studied different constructions and biomedical applications of immunosensors based on fiberoptic and enhanced CL. They discussed three different approaches of immobilization of one of the immunocomponents on the fiberoptic surface. Good results could be achieved by the use of a special membrane closely connected to the fiberoptic, with sensitivities compared to that obtained by the ELISA method but with a faster rate of analysis. The sensor was

Chemiluminescence Sensors

587

Figure 6 (A) Schematic flow diagram of a fiberoptic immunosensor. (a) Buffer solution;

(b) H2O2 solution; (c) luminol solution; (d) four-way cock; (e) cell; (f) optical fiber; (g) PMT; (h) photon-counter; (I) integrator; (P1, P2, P3), pumps. (B) The cell set with an optical fiber. (a) optical fiber; (b) silicone tube (3 mm od 1 mm id); (c) Teflon-made three-way joint (3 mm id); (d) immobilized antibody.

applied to determination of several antigens such as estradiol-17, α-2-interferon, chorionic gonadotropine, antibodies, and cells of Salmonella [99].

6. DNA SENSORS

A DNA optical sensor system was proposed based on the combination of sandwich solution hybridization, magnetic bead capture, FI, and CL for rapid detection of DNA hybridization [100]. Bacterial alkaline phosphatase (phoA) gene and hepatitis B virus (HBV) DNA were used as target DNA. A biotinylated DNA probe was used to capture the target gene onto the streptavidin-coated magnetic beads and a calf intestine alkaline phosphatase (CAP)-labeled DNA probe was used for subsequent enzymatic CL detection. The detection cycle was less than 30 min, excluding the DNA hybridization time, which was about 100 min. Both the phoA gene and HBV DNA could be detected at picogram or femtomole levels. Successive sample detection could be made by removing the magnetic field and using a washing step.

588

Zhang et al.

DNA probes have been covalently immobilized onto the distal end of the optical fiber bundle in the construction of a novel CL DNA bisensor [101]. Hybridization of HRP-labeled complementary nucleotides to the immobilized probes was detected by enhanced CL. This approach was specific, sensitive, and available for diagnostic application with a detection limit of 0.1 ppm.

7. CONCLUSIONS

Analytical techniques using CL reactions in air or in solution as detection methods have received much attention in various fields owing to their extremely high sensitivity along with extra advantages such as the simple instrumentation required, fast dynamic response properties, wide calibration ranges, the easy coupling to various separation techniques such as HPLC and capillary electrophoresis (CE), and suitability for miniaturization in analytical chemistry. Most of these techniques, however, require several types of reagents, which are continuously delivered and thus wasted in large quantities. This is undesirable not only in view of the simplification of the detection device, but also because of cost, apart from environmental and resource considerations. Some efforts so far have been devoted to reduce the consumption of reagents, including controlled release, cyclic use, immobilization, and regeneration. These proceedings may be directed toward the construction of CL sensors. Compared with chemical sensors based on other sensing principles, very few CL sensors have been reported so far. Although one reason might be the fact that the CL technique is unfamiliar to most scientists, the consumption of reagents accompanying CL reactions, resulting in deterioration of the indicator phases or of sensors on prolonged use, could also be an important factor. Further developments should focus on improvement of the lifetime of this type of sensor and on improvement of selectivity by careful selection of suitable CL reaction systems. Miniaturization of CL sensors for special applications should also be studied to extend this new technique to life sciences as well as to specific areas.

REFERENCES

1.ZJ Zhang, W Qin. Fenxi Kexue Xubao 13:72–77, 1997.

2.S Girotti, EN Ferri, F Fini, M Musiani, G Carrea, A Roda, P Rauch. Chem Listy 91:477–482, 1997.

3.X Zhang, WRG Baeyens, AM Garcı´a-Campan˜a, J Ouyang. Trends Anal Chem 18: 384–391, 1999.

4.M Valca´rcel, MD Luque de Castro. Analyst 118:593–600, 1993.

5.M Ishii, M Yamada. J Flow Injection Anal 11:154–168, 1994.

Chemiluminescence Sensors

589

6.TM Freeman, WR Seitz. Anal Chem 50:1242–1246, 1978.

7.Y Maeda, K Aoki, M Munemori. Anal Chem 52:307–311, 1980.

8.GJ Wendel, DH Stedman, CA Cantrell, L Damrauer. Anal Chem 55:937–940, 1983.

9.J Yin, J Ouyang, H Yue. Daxue Huaxue 10:38–39, 1995 (Ch.).

10.H Schiff, GI Mackay, C Castledine, GW Harris, Q Tran. Water Air Soil Pollut 30: 105–114, 1986.

11.CW Spicer, DV Kenny, GF Ward, IH Billick, NP Leslie. Air Waste 44:163–168, 1994.

12.GE Collins, SL Ross-Pehrsson. Anal Chem 67:2224–2230, 1995.

13.U Schurath, W Speuser, R Schmidt. Fresenius J Anal Chem 340:544–547, 1991.

14.ZH Lan, HA Mottola. Anal Chim Acta 329:305–310, 1996.

15.GE Collins, SL Ross-Pehrsson. Sens Actuators B 34:506–510, 1996.

16.GE Collins. Sens Actuators B 35:202–206, 1996.

17.H Meng, F Wu, Z He, Y Zeng. Talanta 48:571–577, 1999.

18.AJ Hills, DH Lenschow, JW Birks. Anal Chem 70:1735–1742, 1998.

19.M Nakagawa, S Kawabata, K Nishiyama, K Utsunomiya, I Yamamoto, T Wada, Y Yamashita, N Yamashita. Sens Actuators B 34:334–338, 1996.

20.K Utsunomiya, M Nakagawa, N Sanari, M Kohota, T Tomiyama, I Yamamoto, T Wada, N Yamashita, Y Yamashita. Sens Actuators B 25:790–793, 1995.

21.M Nakagawa. Sens Actuators B 29:94–100, 1995.

22.M Nakagawa, T Okabayashi, T Fujimoto, K Utsunomiya, I Yamamoto, T Wada, Y, N Yamashita. Sens Actuators B 51:159–162, 1998.

23.F Preuschoff, U Spohn, G Blankenstein, K Mohr, M Kula. Fresenius J Anal Chem 346:924–929, 1993.

24.AB Collaudin, LJ Blum. Sens Actuators B 39:189–194, 1997.

25.A Navas Dı´az, MC Ramos Peinado, MC Torijas Minguez. Anal Chim Acta 363: 221–227, 1998.

26.M Aizawa, Y Ikariyama, M Kuno. Anal Lett B 7:555–564, 1984.

27.LJ Blum. Enzyme Microb Technol 15:407–411, 1993.

28.AA Suleiman, RL Villarta, GG Guilbault. Anal Lett 26:1493–1503, 1993.

29.N Kiba, A Itagaki, S Fukumura, K Saegusa, M Furusawa. Anal Chim Acta 354: 205–210, 1997.

30.JP Preston, TA Nieman. Anal Chem 68:966–970, 1996.

31.AF Martin, TA Nieman. Anal Chim Acta 281:475–481, 1993.

32.MV Cattaneo, KB Males, JHT Luong. Biosens Bioelectron 7:569–574, 1992.

33.MV Cattaneo, JHT Luong. Biotechnol Bioeng 41:659–665, 1993.

34.U Spohn, F Preuschoff, G Blankenstein, D Janasek, MR Kula, A Hacker. Anal Chim Acta 303:109–120, 1995.

35.G Blankenstein, U Spohn, F Preuschoff, J Thommes, MR Kula. Biotech Appl Biochem 20:291–307, 1994.

36.N Kiba, M Tachibana, K Tani, T Miwa. Anal Chim Acta 375:65–70, 1998.

37.D Janasek, U Spohn. Biosens Bioelectron 14:123–129, 1999.

38.YK Zhou, XD Yuan, QL Hao, S Ren. Sens Actuators B 12:37–40, 1993.

39.H Lapp, U Spohn, D Janasek. Anal Lett 29:1–17, 1996.

40.ZH Song, ZJ Zhang, WZ Fan. Acta Chim Sinica 56:1207–1213, 1998.

590

Zhang et al.

41.K Ikebukuro, H Wakamura, I Karube, I Kubo, M Inagawa, T Sugawara, Y Arikawa, M Suzuki, T Takeuchi. Biosens Bioelectron 11:959–965, 1996.

42.K Ikebukuro, R Nishida, H Yamamoto, Y Arikawa, H Wakamura, M Suzuki, I Kubo, T Takeuchi, I Karube. J Biotechnol 48:67–72, 1996.

43.H Nakamura, K Ikebukuro, S Mcniven, I Karube, H Yamamoto, K Hayashi, M Suzuki, I Kubo. Biosens Bioelectron 12:959–966, 1997.

44.H Nakamura, H Tanaka, M Hasegawa, Y Masuda, Y Arikawa, Y Nomura, K Ikebukuro, I Karube. Talanta 50:799–807, 1999.

45.H Nakamura, M Hasegawa, Y Nomura, Y Arikawa, R Matsukawa, K Ikebukuro, I Karube. J Biotechnol 75:127–133, 1999.

46.A Roda, P Rauch, E Ferri, S Girotti, S Ghini, G Carrea, R Bovara. Anal Chim Acta 294:35–42, 1994.

47.J Hlavay, SD Haemerli, GG Guilbault. Biosens Bioelectron 9:189–195, 1994.

48.A Berger, LJ Blum. Enzyme Microbial Technol 16:979–984, 1994.

49.D Janasek, U Spohn. Sens Actuators B 39:291–294, 1997.

50.BX Li. Master’s thesis, Department of Chemistry, Shaanxi Normal University, Xian, P.R. China, 1998.

51.AF Martin, TA Nieman. Biosens Bioelectron 12:479–489, 1997.

52.LJ Blum, SM Gautier, A Berger, PE Michel, PR Coulet. Sens Actuator B 29:1– 9, 1995.

53.XF Xie, AA Suleiman, GG Guilbault, ZM Yang, ZA Sun. Anal Chim Acta 266: 325–329, 1992.

54.K Yokoyama, S Sasaki, K Ikebukuro, T Takeuchi, I Karube, Y Tokitsu, Y Masuda. Talanta 41:1035–1040, 1994.

55.YM Huang, C Zhang, ZJ Zhang. Anal Sci 15:867–870, 1999.

56.ZJ Zhang, WB Ma. Gaodeng Xuexiao Huaxue Xuebao 14:1366–1369, 1993 (Ch.).

57.MS Abdel-Latif, GG Guilbault. Anal Chem 60:2671–2674, 1988.

58.G Blankenstein, F Preuschoff, U Spohn, KH Mohr, MR Kula. Anal Chim Acta 271:231–237, 1993.

59.F Preuschoff, U Spohn, E Weber, K Unverhau, KH Mohr. Anal Chim Acta 280: 185–189, 1993.

60.SM Gautier, LJ Blum, PR Coulet. J Biolumin Chemilumin 5:57–63, 1990.

61.ZJ Zhang, WB Ma, ML Yang. Fenxi Huanxue 20:1048–1051, 1992 (Ch.).

62.ZJ Zhang, WB Ma. Kexue Tongbao 38:230–232, 1993 (Ch.).

63.T Nakagama, M Yamada, T Hobo. Anal Chim Acta 231:7–12, 1990.

64.W Qin, ZJ Zhang, HJ Liu. Anal Chem 70:3579–3584, 1998.

65.A Kuniyoshi, K Hatta, T Suzuki, A Masuda, M Yamada. Anal Lett 29:673–685, 1996.

66.F Yoshimura, T Suzuki, M Yamada, T Hobo. Bunseki Kagaku 41:191–196, 1992.

67.W Qin, ZJ Zhang, SN Liu. Anal Lett 30:11–19, 1997.

68.JZ Lu, W Qin, ZJ Zhang, ML Feng, YJ Wang. Anal Chim Acta 304:369–373, 1995.

69.JZ Lu, ZJ Zhang. Huaxue Xuebao 54:71–76, 1996 (Ch.).

70.W Qin, ZJ Zhang, CJ Zhang. Analyst 122:685–688, 1997.

71.W Qin, ZJ Zhang, FC Wang. Fresenius J Anal Chem 360:130–132, 1998.

72.W Qin, ZJ Zhang, CJ Zhang. Mikrochim Acta 129:97–101, 1998.

Chemiluminescence Sensors

591

73.W Qin, ZJ Zhang, CJ Zhang. Fresenius J Anal Chem 361:824–826, 1998.

74.BX Li, W Qin, ZJ Zhang. Chin Chem Lett 9:471–472, 1998.

75.W Qin, ZJ Zhang, HH Chen. Int J Environ Anal Chem 66:191–200, 1997.

76.W Qin, ZJ Zhang, BX Li, SN Liu. Anal Chim Acta 372:357–363, 1998.

77.W Qin, ZJ Zhang, HJ Liu. Anal Chim Acta 357:127–132, 1997.

78.D Janasek, U Spohn, D Beckmann. Sens Actuators B 51:107–113, 1998.

79.W Qin, ZJ Zhang, CJ Zhang. Anal Chim Acta 361:201–203, 1998.

80.YM Huang, C Zhang, XR Zhang, ZJ Zhang. Anal Lett 32:1211–1224, 1999.

81.LS Kuhn, A Weber, SG Weber. Anal Chem 62:1631–1636, 1990.

82.W Qin, ZJ Zhang, BX Li, YY Peng. Talanta 48:225–229, 1999.

83.FC Wang, W Qin, ZJ Zhang. Fenxi Huaxue 25:1255–1258, 1997.

84.W Qin, ZJ Zhang, HH Chen. Fresenius J Anal Chem 358:861–863, 1997.

85.ZJ Zhang, W Qin. Talanta 43:119–124, 1996.

86.M Nakagawa, I Yamamoto, N Yamashita. Anal Sci 14:209–214, 1998.

87.K Bansho, H Tao, T Imagawa, A Miyazaki. Bunseki Kagaku 42:55–60, 1993.

88.Z Li, ML Feng, JR Lu. Mikrochem J 59:278–283, 1998.

89.TM Downey, TA Nieman. Anal Chem 64:261–268, 1992.

90.CZ Zhao, N Egashira, Y Kurauchi, K Ohga. Anal Sci 13:333–336, 1998.

91.CZ Zhao, N Egashira, Y Kurauchi, K Ohga. Anal Sci 14:439–441, 1998.

92.CZ Zhao, N Egashira, Y Kurauchi, K Ohga. Electrochim Acta 43:2167–2173, 1998.

93.N Egashira, Y Nabeyama, Y Kurauchi, K Ohga. Anal Sci 12:793–795, 1996.

94.M Aizawa. Protein, Nucleic Acid and Enzyme. Bessatsu 31:278–280, 1987.

95.T Hara, K Tsukagoshi, A Arai, Y Imashiro. Bull Chem Soc Jpn 62:2844–2848, 1989.

96.X Zhang, M Feng, J Lu, Z Zhang. Huaxue Xuebao 52:83–88, 1994 (Ch.).

97.DL Gatto-Menking, H Yu, JG Bruno, MT Goode, M Miller, AW Zulich. Biosens Bioelectron 10:501–507, 1995.

98.NF Starodub, PY Arenkov, AN Starodub, VA Berenzin. Optic Eng 33:2958–2963, 1994.

99.NF Starodub, PY Arenkov, AN Starodub, VA Berenzin. Sens Actuators B 18:161– 165, 1994.

100.X Chen, XE Zhang, YQ Chai, WP Hu, ZP Zhang, XM Zhang, AEG Cass. Biosens Bioelectron 13:451–458, 1998.

101.GJ Zhang, YK Zhou, JW Yuan, S Ren. Anal Lett 32:2725–2736, 1999.

Appendix: Abbreviations

A/D

Analog to digital

AAS

Atomic absorption spectrometry

Ab

Antibody

ABAP

2,2-Azo-bis(2-aminodipropane)dihydrochloride

ABCP

2,2-Azo-bis(2-cyanopropane)

ABEI

N-(4-Aminobutyl)-N-ethylisoluminol

ABTS

2,2-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)

AchE

Acetylcholinesterase

ACL

Antioxidative capacity of lipid-soluble compounds

ACP

Antioxidative capacity of proteins

ACR

Rest of total antiradical capacity

ACU

Urate independent component of ACW

ACW

Antioxidative capacity of water-soluble compounds

ADP

Adenosine diphosphate

AE

Acridinium ester

AFP

α-Fetoprotein

Ag

Antigen

ALP (or AP)

Alkaline phosphatase

AMP

Adenosine monophosphate

6-AMP

6-Aminomethylphthalhydrazide

AMPPD

3-(2-Spiroadamantane)-4-methoxy-4-

 

(3-phosphoryloxy)phenyl-1,2-dioxetane

AMVN

2,2-Azo-bis (2,4-dimethylvaleronitrile)

ANS

8-Aniline-1-naphthalenesulfonic acid

593

594

Appendix

AP

Aminophthalate anion

APAN

Atmospheric pressure active nitrogen

APP-CLS

Analyte pulse perturbation-chemiluminescence spectroscopy

ARP

Arthromyces rasomus peroxidase

ASC

Ascorbic acid

ATP

Adenosine triphosphate

AVP

Avalanche photodiode

BCI

5-Bromo-4-chloro-3-indolyl

BHT

2,6-Di-tert-butyl-4-methylphenol

BL

Bioluminescence

Brij-35

Polyoxyethylene (23) dodecanol

BSA

Bovine serum albumin

c.m.c.

Critical micelle concentration

CAP

Calf alkaline phosphatase

CAR

Continuous-addition-of-reagent

CAR-CLS

Continuous-addition-of-reagent chemiluminescence

 

spectroscopy

CAS

Catecholamines

CAT

Catechol

CBI

Cyanobenz[f] isoindole

CCD

Charge coupled device

cDNA

Complementary deoxyribonucleic acid

CE

Capillary electrophoresis

CE-CL

Capillary electrophoresis-chemiluminescence

CEDAB

Cetylethyldimethylammonium bromide

CE-ECL

Capillary electrophoresis-electrogenerated chemiluminescence

CETAS

Capillary electrophoresis micrototal analysis system

CGE

Capillary gel electrophoresis

CGH

Comparative genomic hybridization

ChO

Choline oxidase

CIA

Capillary ion analysis

CID

Charge injection device

CIEEL

Chemically initiated electron exchange luminescence

CIEF

Capillary isoelectric focusing

CITP

Capillary isotachophoresis

CK

Creatine kinase

CL

Chemiluminescence

CMPI

2-Chloro-1-methylpyridinium iodide

CMV

Cytomegalovirus

CNN

Computational neural network

CPPO

2,4,5-Trichloro-6-carbopentoxyphenyl oxalate

CSTR

Continuous stirring tank reactor

Appendix

595

CZE

Capillary zone electrophoresis

d(G)n

Polydeoxyguanylic acid

DBD-F

4-(N,N-Dimethylaminosulphonyl)-7-fluoro-2,1,3-

 

benzoxadiazole

DBD-H

4-(N,N-Dimethylaminosulphonyl)-7-hydrazino-2,1,3-

 

benzoxadiazole

DBPM

N-[4-(6-Dimethylamino-2-benzofuranyl)phenyl]maleimide

DCIA

7-Dimethylamino-3-{4-[(iodoacetyl)amino]phenyl}-4-

 

methylcoumarin

DDDAB

Didodecyldimethylammonium bromide

DEA

Diethanolamine

DETBA

1,3-Diethyl-2-thiobarbituric acid

DFPO

Bis(2,6-difluorophenyl)oxalate

DIC

Differential interference contrast

DMF

N,N-Dimethylformamide

DMQPH

6,7-Dimethoxy-1-methyl-2(1H )-quinoxalinone-3-

 

proprionylcarboxylic acid hydrazide

DMS

Dimethyl sulfide

DMSO

Dimethyl sulfoxide

DNA

Deoxyribonucleic acid

DNPO

Bis-(2,4-dinitrophenyl) oxalate

DNS-Cl

Dansyl chloride

DNS-H

Dansyl hydrazine

DODAB

Dioctadecyldimethylammonium bromide

DPA

9,10-Diphenylanthracene

DPH

4,5-Diaminophthalhydrazide

DPPA

4-[4,5-Di(2-pyridyl)-1 H-imidazol-2-yl]phenylboronic acid

DSC

N,N-Disuccinimidyl carbodiimide

DTDCI

3,3-Diethylthiadicarbocyanine iodide

DVS

Divinyl sulfone

EC

Electrochemical

ECL

Electrogenerated chemiluminescence

ELISA

Enzyme-linked immunosorbent assay

EMMA

Electrophoretically-mediated microanalysis

EOF

Electroosmotic flow

EY

Eosine Y

FCLD

Fluorine-induced chemiluminescence detector

FHC

Fluorohydrocarbon

FIA

Flow injection analysis

FID

Flame ionization detector

Fl

Fluorescein

FL

Fluorescence

Соседние файлы в предмете Химия