
- •1.Сущность материалистических и идеалистических представлений в биологии
- •2. Определение сущности жизни. Свойства и уровни организации живого
- •3. Доклеточные и клеточные формы жизни
- •4. Правило проведения световой микроскопии биологических объектов
- •5. Приготовления временных и постоянных микропрепаратов световой микроскопии
- •6. Химический состав клеточного вещества, макро и микроэлементы
- •7.Строение и функционирование эукариотической клетки. Организация цитоплазматического аппарата.
- •8. Белки, их роль в жизнеобеспечении клеток и организмов.
- •9. Органоиды соматических клеток, их строение и назначение.
- •10. Клеточная теория. Методы изучения клеток.
- •11. Клеточное ядро, его организация, назначение. Ядерный хроматин.
- •12. Строение и функции клеточных мембран.
- •13 . Нуклеиновые кислоты. Днк, её строение и роль в клетке.
- •14 . Рибонуклеиновые кислоты, их виды, строение, назначение.
- •15 . Органические вещества в клетках, их назначение.
- •16 . Минеральные вещества в клетках, их роль назначение. Осмотические процессы в растительных и животных клетках.
- •17. Биосинтез белков в клетках.
- •18 . Энергетический обмен в клетках.
- •19 . Организация наследственного аппарата в эукариотических клетках. Геном соматической клетки.
- •21 . Генетический код, его свойства.
- •22 . Строение хромосом, их типы, классификация в кариотипе человека.
- •23 . Хромосомная теория т.Моргана.
- •24 . Деление соматических клеток. Характеристика фаз митоза.
- •25 . Половые клетки человека, их строение. Типы строения яйцеклеток.
- •26 . Репродукция живого. Классификация способов размножения
- •27 . Овогенез и сперматогенез.
- •28 . Митоз, его биологическое значение.
- •29 . Мейотическое деление, его особенности, характеристика стадий
- •30 . Мутации наследственного аппарата, их классификация.
- •31 . Факторы мутагенеза наследственного аппарата.
- •32. Включения в эукариотических клетках, их виды, назначение.
- •33. Изменчивость, её виды в человеческих популяциях.
22 . Строение хромосом, их типы, классификация в кариотипе человека.
Хромосомы — это основные структурные элементы клеточного ядра, являющиеся носителями генов, в которых закодирована наследственная информация. Обладая способностью к самовоспроизведению, хромосомы обеспечивают генетическую связь поколений. Кариоти́п — совокупность признаков (число, размеры, форма и т. д.) полного набора хромосом, присущая клеткам данного биологического вида (видовой кариотип), данного организма (индивидуальный кариотип) или линии (клона) клеток. Кариотипом иногда также называют и визуальное представление полного хромосомного набора (кариограммы). Из 46 хромосом, составляющих хромосомный набор человека, 44 или 22 пары представляют аутосомные хромосомы, последняя пара — половые хромосомы. У женщин конституция половых хромосом в норме представлена двумя хромосомами X, а у мужчин — хромосомами X и У. Во всех парах хромосом как аутосомных, так и половых одна из хромосом получена от отца, а вторая — от матери. Хромосомы одной пары называются гомологами, или гомологичными хромосомами. В половых клетках (сперматозоидах и яйцеклетках) содержится гаплоидный набор хромосом, т.е. 23 хромосомы. Сперматозоиды делятся на два типа в зависимости от того, содержат ли они хромосому X или Y. Все яйцеклетки в норме содержат только хромосому X. Хромосомы хорошо видны после специальной окраски во время деления клеток, когда хромосомы максимально спира-лизованы. При этом в каждой хромосоме выявляется перетяжка, которая называется центромерой. Центромера делит хромосому на короткое плечо (обозначается буквой «р») и длинное плечо (обозначается буквой «q»). Центромера определяет движение хромосомы во время клеточного деления. По положению центромеры хромосомы классифицируют на несколько групп. Если центромера располагается посредине хромосомы, то такая хромосома называется метацентриче-ской, если центромера располагается ближе к одному из концов хромосомы, то ее называют акроцентрической. Некоторые акроцентрические хромосомы имеют так называемые спутники, которые в неделящейся клетке формируют ядрышки. Ядрышки содержат многочисленные копии рРНК. Кроме того, различают субметацентрические хромосомы, когда центромера расположена не посредине хромосомы, а несколько сдвинута к одному из концов, но не столь значительно, как в акроцентрических хромосомах. Концы каждого плеча хромосомы называют теломерами. Установлено, что теломеры играют важную роль в сохранении стабильности хромосом. В теломерах содержится большое число повторов последовательности нуклеотидов ТТАГГГ, так называемых тандемных повторов. В норме во время клеточного деления происходит уменьшение числа этих повторов в теломерах. Однако каждый раз они достраиваются с помощью специального фермента, который называют теломеразой. Уменьшение активности этого фермента приводит к укорочению теломер, что, как полагают, является причиной гибели клеток, а в норме сопровождает старение.
23 . Хромосомная теория т.Моргана.
Основоположник теории Томас Гент Морган, американский генетик, нобелевский лауреат, выдвинул гипотезу об ограничении законов Менделя.
В экспериментах он использовал плодовую мушку-дрозо-филу, обладающую важными для генетических экспериментов качествами: неприхотливостью, плодовитостью, небольшим количеством хромосом (четыре пары), множеством четко выраженных альтернативных признаков.
Морган и его ученики установили следующее:
1. Гены, расположенные в одной хромосоме, наследуются совместно или сцепленно.
2. Группы генов, расположенных в одной хромосоме, образуют группы сцепления. Число групп сцепления равно гаплоидному набору хромосом у гомогаметных особей и п+1 у гетерогаметных особей.
3. Между гомологичными хромосомами может происходить обмен участками (кроссинговер); в результате кроссинговера возникают гаметы, хромосомы которых содержат новые комбинации генов.
4. Частота кроссинговера между гомологичными хромосомами зависит от расстояния между генами, локализованными в одной хромосоме. Чем это расстояние больше, тем выше частота кроссинговера. За единицу расстояния между генами принимают 1 морганиду (1% кроссинговера) или процент появления кроссоверных особей. При значении этой величины в 10 морганид можно утверждать, что частота перекреста хромосом в точках расположения данных генов равна 10% и что в 10% потомства будут выявлены новые генетические комбинации.
5. Для выяснения характера расположения генов в хромосомах и определения частоты кроссинговера между ними строят генетические карты. Карта отражает порядок расположения генов в хромосоме и расстояние между генами одной хромосомы. Эти выводы Моргана и его сотрудников получили название хромосомной теории наследственности. Важнейшими следствиями этой теории являются современные представления о гене как о функциональной единице наследственности, его делимости и способности к взаимодействию с другими генами.