
- •В. Ф. Миткевич физические основы электротехники
- •Вопрос 1. Может ли физическое явление) протекать вне пространства и времени?
- •Глава I. Магнитный поток.
- •§ 1. Общая характеристика магнитного поля.
- •1) Faraday, Experimental Researches in Electricity, Vol. III.
- •§ 2. Основные определения и соотношения.
- •§ 3.Магнитныйпоток.
- •1) В среде однородной и изотропной линии магнитной индукции совпадают с так называемыми силовыми линиями магнитного поля.
- •§ 4. Принцип непрерывности магнитного потока. Опыты Фарадея.
- •1) Здесь мы имеем, по существу, прообраз дисковой униполярной машины: радиусы диска „режут" магнитные линии, и в них индуктируется электродвижущая сила.
- •§ 5. Анализ опытовФарадея.
- •2) См. Гл. III, § 46. Непрерывность электрического тока.
- •§ 6. Математическая формулировка принципа непрерывности магнитного потока.
- •3) Maxwell, Treatise on Electricity and Magnetism, Vol. II. § 402.
- •§ 7. Формулировка закона электромагнитной индукции.
- •1) Faraday, Experimental Researches in Electricity, Vol. III, § 3115. .... The quantity of electricity, thrown into a current is directly as the amount of curves intersected".
- •§ 8. Вопрос об условиях тождественности фарадеевской и максвелловской формулировок закона электромагнитной индукции.
- •§ 9. Случай изменяемого контура.
- •§ 10. Общий вывод по вопросу о законе электромагнитной
- •§ 11. О преобразованиях магнитного потока.
- •§ 12. Механизм перерезывания магнитных линий проводником.
- •1) Faraday, Experimental Researches in Electricity, Vol. 1, § 238.
- •§ 13. Преобразования магнитного потока в трансформаторе.
- •§ 14. Роль магнитных экранов.
- •§ 15. Проблема бесколлекторной машины постоянного тока.
- •1) Приборы с постоянными магнитами учитывают среднее значение силы тока и поэтому при чисто переменном токе не дают никакого отклонения.
- •§ 16. Магнитная цепь.
- •§ 17. Линейный интеграл магнитной силы.
- •§ 18. Вывод точной формулировки закона магнитной цепи.
- •1) Здесь I — в абсолютных электромагнитных единицах. Для перехода к амперам надо множить на
- •§ 19. Приближенное выражение закона магнитной цепи.
- •1) Всякий проводник является, конечно, телом трех измерений; этим выражением мы подчеркиваем в данном случае лишь значительные по сравнению с длиною поперечные размеры проводника
- •§ 20. Энергия магнитного потока.
- •§ 21. Энергия магнитной линии (единичной трубки магнитной
- •§ 22. Тяжение магнитных линий.
- •1) Подобное „охранное кольцо" мы имеем в абсолютном влектрометре в. Томсона (лорда Кельвина).
- •1) Maxwell, Treatise on Electricity and Magnetism, Vol. II, §§641—645.
- •§ 23. Подъемная сила магнита.
- •§ 24. Отрывной пермеаметр.
- •§ 25. Природа электромагнитной силы.
- •§ 26. Боковой распор магнитных линий.
- •§ 27. Преломление магнитных линий.
- •§ 28. Принцип инерции магнитного потока.
- •§ 29 Общая формулировка принципа инерции магнитного
- •Глава II. Магнитные свойства вещества.
- •§ 30. Роль вещества в магнитном процессе.
- •§ 31. Фиктивность „магнитных масс".
- •1) Faraday, Experimental Researches in Electricity §§ 3313 — 3317.
- •§ 32. Общая характеристика магнитных материалов.
- •§ 33. Магнитный цикл.
- •§ 34. Гистерезисная петля как характеристика магнитного
- •§ 36. Расчет потерь на гистерезис и формула Штейнметца.
- •§ 37. Гипотеза вращающихся элементарных магнитов.
- •§ 38. Магнитное насыщение.
- •§ 39. Влияние сотрясений на магнитные свойства.
- •§ 40. Влияние температурных условий на магнитные свойства вещества.
- •§ 41. Магнитная вязкость.
- •§ 42. Изменение размеров тел при намагничении.
- •§ 43. Гистерезис вращения.
- •§ 44. Некоторые магнитные свойства железа и его сплавов.
- •Глава III Электрическое смещение.
- •§ 45. Общая характеристика электромагнитных процессов.
- •§ 47. Электрическое смещение. Основные положения Максвелла.
- •1) В настоящее время диэлектрическую постоянную принято обозначать через .
- •2) Курсив переводчика.
- •§ 48. Мераэлектрического смещения.
- •§ 49. Ток смещения.
- •§ 50. Теорема Максвелла.
- •§ 51. Природа электрического смещения.
- •§ 52. Поясненияк теореме Максвелла.Выводы изосновной
- •§ 53. Математическая формулировка принципа непрерывности
- •§ 54. Механическая аналогия.
- •§ 55. Непрерывность тока в случае электрической конвекции.
- •§ 56. Сложные примеры непрерывности тока.
- •Глава IV.Электрическое поле.
- •§ 57. Связь электрического поля с электромагнитными процессами. Область электростатики.
- •§ 58. Закон Кулона и вытекающие из него определения и соотношения.
- •§ 59. Электродвижущая сила и разность потенциалов. Закон электродвижущей силы.
- •1) Maxwell, Treatise on Electricity and Magnetism, Vol. I, § 45.
- •§ 60. Электрическая деформация среды.
- •§ 61. Линии смещения.
- •§ 62. Трубка смещения.
- •§ 63. Фарадеевские трубки.
- •§ 64. Фарадеевская трубка и количество электричества, с нею связанное.
- •§ 65. Вторая формулировка теоремы Максвелла.
- •§ 66. Электризация через влияние. Теорема Фарадея.
- •§ 67. Энергия электрического поля.
- •§ 68. Механические проявленияэлектрического поля.
- •§ 69. Преломлениефарадеевских трубок.
- •§ 70. Электроемкость и диэлектрическая постоянная.
- •§ 71. Свойства диэлектриков.
- •1) Maxwell. Treatise on Electricity and Magnetism, Vol. I, § 59 (в конце).
- •Глава V. Природа электрического тока.
- •§ 72 Общие соображения о природе тока.
- •1) Faraday, Experimental Researches in Electricity, § 3303.
- •1) Maxwell, Treatise on El. And Magn., Vol. II, § 572.
- •2) Faraday, Experimental Researches in Electricity, §§ 517, 1642, 3269.
- •§ 73. Движениеэлектричества внутри проводников.
- •2) Maxwell, Treatise on El. And Magn., Vol II, § 569.
- •§ 74. Участие электрического поля в процессе электрического тока.
- •§ 75. Участие магнитного поля в процессе электрическоготока.
- •Глава VI.
- •§ 76. Общие соображения.
- •§77. Ионы.
- •1 J. J. Thomson, Conduction of electricity through gases § 10.
- •§ 78. Ионизирующие агенты.
- •§ 79. Заряд и масса иона.
- •§ 80. Влияние давления газа на характер разряда.
- •§ 81. Различные стадии прохождения тока через газы
- •§ 82. Основные соотношения, характеризующие ток через газы.
- •§ 83. Тихий разряд. Корона.
- •§ 84. Разрывной разряд.
- •§ 85. Вольтова дуга.
- •§ 86. Дуговые выпрямители.
- •§ 87. Различные стадии разряда через газы при малых
- •1) На рис. 145 свечение отмечено черными штрихами.
- •§ 88. Прохождение электрического тока через пустоту.
- •§ 89.Пустотныеэлектронные приборы.
- •§ 90. Заключение.
- •Глава VII.Электродинамика.
- •§ 91. Основные положения Максвелла.
- •1) „Something progressive and not a mere arrangement" (Exp. Res., 283).
- •1) Faraday. Exp. Res., 283.
- •1) Отметим, что именно отсюда берет начало термин самоиндукция, т. Е. Индукция в своем собственном магнитном поле. Переводчик.
- •§ 92. Вторая форма уравнений Лагранжа.
- •1) См., например, и. В. Мещерский, „Теоретическая механика", ч. II.
- •§ 94. Выбор обобщенных координат для электродинамической системы.
- •§ 95. Энергия: пондеро-кинетическая, электрокинетическая и нондеро-электрокинетическая.
- •1) Термин „пондеро-кинетическая" происходит от латинского слова pondus (род. П. Ponderis), обозначающего вес, и, таким образом, указывает на то, что
- •§ 96. Общее обследование сил, действующих в электродинамической системе.
- •1) Ради простоты мы здесь опускаем индексы, указывающие, к кой именно цепи относятся рассматриваемые величины
- •§ 97. Электрокинетическая энергия.
- •§ 98. Электродвижущая сила самоиндукции.
- •§ 99. Коэффициент самоиндукции.
- •§ 100. Электродвижущая сила взаимной индукции.
- •§ 101. Коэффициент взаимной индукции.
- •§ 102. Связь между коффициентами самоиндукциии взаимной
- •§ 103. Общие выражения длямагнитных потоков, сцепляющихся с отдельными контурами системы.
- •§ 104. Общие выражения для электродвижущих сил, индуктируемых в отдельных цепях системы.
- •§ 105. Роль короткозамкнутой вторичной цепи.
- •§ 106. Действующие коэффициенты самоиндукции и взаимной индукции.
- •§ 107. Электромагнитная сила. Общие соображения.
- •1) Как в этой, так и в других приведенных в настоящей параграфе формулировках речь идет о полной магнитной потоке, т. Е. О полном числе сцеплений потока с рассматриваемым контуром.
- •§ 108. Условия возникновения электромагнитной силы.
- •§ 109. Случай сверхпроводящнх контуров.
- •§ 110. Случай контура с током во внешней магнитном поле.
- •§ 111. Основная роль бокового распора и продольного тяжения магнитных линий.
- •§ 112. Случай прямолинейного проводника во внешнем магнитном поле.
- •§ 113. Электромагнитные взаимодействия в асинхронном двигателе.
- •§ 114. Величина и направление электромагнитной силы в случае одного контура с током.
- •1) Pinch — по-английски означает „ущемление".
- •§ 115. Величина и направлениесилы электромагнитного взаимодействия двух контуров с током.
- •§ 116. Случай электромагнитного взаимодействия любого числа
- •§ 117. Электромагнитная сила, действующая на участок проводника с током, расположенный во внешней магнитном поле.
- •Глава VIII.Движениеэлектромагнитной анергии.
- •§ 118. Электромагнитное поле.
- •1) См. Maxwell. Treatise on Electricity and Magnetism, Vol. II §§ 822 и 831 (в отделе — On the hypothesis of Molecular Vortices).
- •§ 119. Основные уравнения электромагнитного поля.
- •§ 120. Общий характер дифференциальных уравнений электромагнитного поля,
- •§ 121. Распространение электромагнитной энергии.
- •§ 123. Опытные данные, подтверждающие теорию Максвелла.
- •§ 124.ОпытыГерца.
- •§ 125. Механизм движения электромагнитной энергии. Вектор
- •§ 126. Распространение тока в металлических массах. Поверхностный аффект.
- •1) Так как, вообще,
- •1) При этом мы меняем порядок дифференцирования, т. Е. Берем сначала производную по у, а затем по t. Как известно, на результат это не влияет.
- •1) P. Kalantaroff. Les equations aux dimensions des grandeurs electriques .Et magnetiques. — Revue Generale de l'Electricite, 1929, t, XXV, № 7, p. 235.
§ 123. Опытные данные, подтверждающие теорию Максвелла.
Переходя к вопросу об экспериментальном подтверждении установленных Максвеллом законов распространения электромагнитной энергии, следует отметить, что соответствующий опытный материал настолько велик по своему объему, что излагать его здесь полностью нет никакой возможности, да и нет необходимости.
Достаточно указать, что современная радиотехника, во всем богатстве ее последних достижений, представляет собою уже не экспериментальный материал, а твердо стоящую отрасль техники, базирующуюся на тех полученных чисто теоретическим путем законах распространения электромагнитной энергии, которые были даны Максвеллом.
Здесь же мы хотим остановиться кратко на другой категории экспериментальных данных, подтверждающих теорию Максвелла, именно, на данных, полученных в области оптики.
Выше было указано, что совпадение скорости распространения электромагнитных волн со скоростью света свидетельствует о внутреннем родстве явлений электромагнитных, с одной стороны, и явлений оптических, с другой, т. е. выражает собою высказанное впервые Максвеллом положение об электромагнитной природе . света.
Итак, колебания, составляющие основу явлений света, должны быть признаны не обычными механическими колебаниями, а электромагнитными, т. е. колебаниями той же природы, что и электромагнитные колебания, которыми мы столь широко пользуемся для передачи радиосигналов. Разница между теми и другими исчерпывается разницей в длине волны, т. е. в частоте.
Таким образом, свет представляет собою те же электромагнитные колебания, но только весьма высокой частоты, или, иначе говоря, весьма малой длины волны. Следовательно, скорость его распространения подчиняется той же зависимости от электрических и магнитных свойств среды, которая выражается полученным нами соотношением:
Это дает возможность установить аналитически связь между оптическими свойствами среды, с одной стороны, и ее магнитной проницаемостью и диэлектрической постоянной, с другой. Сопоставление такой, полученной аналитическим путем, зависимости <: опытными данными может рассматриваться как экспериментальная проверка теории Максвелла.
416
Оптической характеристикой среды служит показатель преломления, т. е. отношение:
n=v0/v1,
где v0 есть скорость распространения света в пустоте,av1 — скорость его в данной среде. Подставляя:
и
где 0 и0— диэлектрическая постоянная и магнитная проницаемость пустоты, а1и1 — те же характеристики для данной среды, получаем:
Если имеем дело со средой немагнитной, то можно считать, что:
Тогда:
Если выражать диэлектрические постоянные в абсолютной электростатической системе единиц, то для пустоты имеем:
0=1.
Следовательно, численно будем иметь:
или
Таким образом, получаем:
n2=1, (147)
т. е. квадрат показателя преломления всякой немагнитной среды должен быть равен ее диэлектрической постоянной, выраженной в электростатических единицах.
Прежде чем приводить опытные данные, характеризующие соотношения между показателем преломления и диэлектрической постоянной той или иной среды, необходимо, однако, сделать некоторую оговорку. Дело в том, что и показатель преломления n и диэлектрическая постояннаяне являются величинами строго постоянными для каждой данной среды, а изменяются в зависимости от
417
частоты тех электромагнитных колебаний, которые имеют место в данной среде. Характер закономерности изменения nив функции от частоты еще не вполне изучен. Для показателя преломленияn Коши дал эмпирическую формулу:
n=A+B-2+C-4,
где — длина волны,А, В и С — постоянные коэффициенты, определяемые из опыта. Формула эта хорошо согласуется с экспериментальными данными, но лишь для видимой части спектра, т. е. для так называемых световых частот (порядка 1015). Так как выведенная выше аналитическая зависимость (147):
n2=
справедлива, соответственно сказанному, лишь при условии равенства частот, для которых определены величины n и, и так как мы не имеем еще возможности осуществить опыт для определения величиныпри световых частотах, то нам придется брать величиныдля доступных нам более низких частот и приводить к этой частоте показатель преломления по формуле Коши. Эту приведенную величину показателя преломления мы будем обозначатьn'. Так как формула Коши хорошо согласуется с опытом лишь для световых частот, как указано выше, то естественно ожидать некоторых отклонений от равенства:
n2=.
Тем замечательнее случаи, для которых это соотношение почти в точности удовлетворяется.
Приводим в виде примера ряд чисел, подтверждающих справедливость выведенного соотношения.
Из последнего столбца этой таблички видно что величина (n')2/,
т. е. отношение квадрата показателя преломления к диэлектрической постоянной, мало отличается от единицы. Таким образом, для перечисленных в таблице диэлектриков соотношение
n2=удовлетворяется в значительной степени полно.
418
Вообще такого рода совпадение наблюдается всегда, когда нет так называемой аномальной дисперсии, которая обусловливается сложными внутримолекулярными процессами.
1) Частота световых колебаний порядка 1016 периодов в секунду. Наиболее высокие частоты, находящие техническое применение в современной радиотехнике, не превышают 109. В лабораторной обстановке получены уже частоты электромагнитных колебаний порядка 1011. Наименьшие длины волн, известные в природе,
порядка 10-11 см соответствует частоте порядка 1021 периодов в секунду.