
- •1. Основные понятия и определения электротехники. Топологические параметры.
- •2. Электронные осциллографы Электронные осциллографы
- •3. Эквивалентные схемы для источников энергии. Источники эдс и источники тока.
- •4. Цифровые измерительные приборы
- •5. Закон Ома для участка цепи с эдс
- •6. Аналоговые электронные вольтметры.
- •7. Расчет разветвленных магнитных цепей на основе закона Кирхгофа.
- •8. Приборы электродинамической и ферродинамической систем. Однофазный индукционный счетчик электрической цепи.
- •9. Расчет цепей постоянного тока при последовательном и параллельном соединении пассивных приемников.
- •10. Приборы магнитоэлектрической и электромагнитной схем. Магнитоэлектрическая система
- •Прибор магнитоэлектрической системы
- •Достоинства магнитоэлектрической системы
- •Недостатки магнитоэлектрической системы
- •Электромагнитная система
- •Прибор электромагнитной системы
- •Достоинства электромагнитной системы
- •Недостатки электромагнитной системы
- •11. Электрические цепи переменного тока, принципы получения переменной эдс.
- •12. Электрические измерения и приборы. Основные определения и термины. Методы измерений. Классификация средств измерений.
- •13. Действующие и среднее значения токов и напряжений в цепях переменного тока.
- •14. Цифро-аналоговые и аналогово-цифровые преобразователи.
- •15. Законы Ома и Кирхгофа для мгновенных значений токов и напряжений в цепях переменного тока.
- •16. Регистры, кольцевые счетчики. Счетчики с двоичным и недвоичным коэффициентами пересчета.
- •17. Расчет цепей переменного тока методом векторных диаграмм.
- •18. Последовательные цифровые устройства. Триггеры и их разновидности.
- •19. Расчет последовательных цепей переменного тока методом векторных диаграмм.
- •20. Комбинационные цифровые устройства. Мультиплексоры, демультиплексоры, дешифраторы, сумматоры.
- •21. Расчет параллельных цепей переменного тока методом векторных диаграмм.
- •22. Основные типы цифровых интегральных схем. Параметры цифровых ис.
- •23. Комплексный метод расчета параметров электрических цепей переменного тока.
- •24. Представление информации в цифровой форме. Составление логических функций и функциональных схем.
- •25. Явление резонанса в цепях переменного тока.
- •26. Транзисторные ключи на биполярных и полевых транзисторах. Аналоговые коммутаторы.
- •27. Трехфазные цепи переменного тока. Соединение приемников звездой и треугольником. Основные определения
- •2. Соединение в звезду. Схема, определения
- •3. Соединение в треугольник. Схема, определения
- •28. Импульсный режим работы электронных устройств. Генераторы импульса.
- •29. Нелинейные элементы электрических цепей и их характеристики. Графический метод расчета нелинейных цепей постоянного тока.
- •30. Генераторы гармонических колебаний.
- •2. Генератор lc-типа
- •31. Политический метод расчета нелинейных цепей.
- •32. Линейные преобразователи электрических сигналов на основе операционных усилителей
- •33. Магнитные цепи. Основные понятия и определения. Магнитный поток, индукция, напряженность. Магнитная проницаемость. Явление магнитного гистерезиса в веществе.
- •34. Методы расчета транзисторных усилителей.
- •35. Прямая и обратная задачи в расчетах магнитных цепей.
- •36. Усилители на транзисторах. Стабилизация начальной рабочей точки.
- •37. Уравнения Кирхгофа для магнитной цепи.
- •38. Классификация, основные параметры и характеристики усилителей. Обратная связь в усилителях.
- •39. Электромагнитные устройства. Принцип работы и основные аналитические соотношения для электромагнитов и электромагнитных реле.
- •40. Сглаживающие фильтры, стабилизаторы и инверторы в источниках вторичного электропитания.
- •41. Устройство и принцип работы трансформатора, его векторная диаграмма
- •Устройство и принцип работы
- •42. Выпрямительные схемы источников электропитания. Однополупериодные и двухполуперионые выпрямители.
- •43. Режим холостого хода трансформатора и его работа под нагрузкой.
- •44. Назначение и структура источников вторичного электропитания, их основные характеристики.
- •45. Устройство и принцип действия генератора постоянного тока эдс и электромагнитный момент. Способы возбуждения генераторов постоянного тока.
- •46. Операционные усилители, эквивалентная схема, основные характеристики и уравнения, интегральные микросхемы.
- •47. Двигатели постоянного тока. Регулирование скорости двигателей постоянного тока.
- •48. Основные свойтва, характеристики и типы тиринисторов. Динисторы и тринисторы.
- •49. Устройство и принцип работы асинхронного двигателя. Его характеристики.
- •50. Основные свойства, характеристики и типы полевых транзисторов.
- •51. Пуск и реверсирование асинхронных двигателей. Регулирование частоты вращения.
- •52. Устройство и принцип работы синхронного генератора. Его характеристики.
- •54. Основные свойства, характеристики и типы полупроводниковых диодов. Расчет электронных схем с диодами.
- •4.1.1. Выпрямление в диоде
- •4.1.2. Характеристическое сопротивление
- •4.1.4. Эквивалентная схема диода
- •55. Работа синхронной машины в режиме двигателя. Рабочие характеристики синхронного двигателя.
- •56.Краткие сведения о структуре полупроводников, электрические переходы в полупроводниках.
- •Свойства полупроводников.
- •Строение атомов полупроводников.
- •Электропроводность полупроводника.
- •Электронно-дырочная проводимость.
- •Электронная проводимость.
- •Дырочная проводимость.
Электронная проводимость.
Допустим, в кристалле полупроводника, в котором атомы имеют по четыре валентных электрона, мы заменили один атом атомом, у которого пять валентных электронов. Этот атом своими четырьмя электронами свяжется с четырьмя соседними атомами полупроводника, а пятый валентный электрон останется «лишним» – то есть свободным. И чем больше будет таких атомов в кристалле, тем больше окажется свободных электронов, а значит, такой полупроводник по своим свойствам приблизится к металлу, и чтобы через него проходил электрический ток, в нем не обязательно должны разрушаться межатомные связи.
Полупроводники, обладающие такими свойствами, называют полупроводниками с проводимостью типа «n», или полупроводники n-типа. Здесь латинская буква n происходит от слова «negative» (негатив) – то есть «отрицательный». Отсюда следует, что в полупроводнике n-типа основными носителями заряда являются – электроны, а не основными – дырки.
Дырочная проводимость.
Возьмем все тот же кристалл, но теперь заменим его атом атомом, в котором только трисвободных электрона. Своими тремя электронами он свяжется только с тремя соседними атомами, а для связи с четвертым атомом у него не будет хватать одного электрона. В итоге образуется дырка. Естественно, она заполнится любым другим свободным электроном, находящимся поблизости, но, в любом случае, в кристалле такого полупроводника не будет хватать электронов для заполнения дырок. И чем большебудет таких атомов в кристалле, тем больше будет дырок.
Чтобы в таком полупроводнике могли высвобождаться и передвигаться свободные электроны, обязательно должны разрушаться валентные связи между атомами. Но электронов все равно не будет хватать, так как число дырок всегда будет большечисла электронов в любой момент времени.
Такие полупроводники называют полупроводниками с дырочной проводимостью или проводниками p-типа, что в переводе от латинского «positive» означает «положительный». Таким образом, явление электрического тока в кристалле полупроводника p-типа сопровождается непрерывным возникновением иисчезновением положительных зарядов – дырок. А это значит, что в полупроводнике p-типа основными носителями заряда являются дырки, а не основными – электроны.