
- •1. Основные понятия и определения электротехники. Топологические параметры.
- •2. Электронные осциллографы Электронные осциллографы
- •3. Эквивалентные схемы для источников энергии. Источники эдс и источники тока.
- •4. Цифровые измерительные приборы
- •5. Закон Ома для участка цепи с эдс
- •6. Аналоговые электронные вольтметры.
- •7. Расчет разветвленных магнитных цепей на основе закона Кирхгофа.
- •8. Приборы электродинамической и ферродинамической систем. Однофазный индукционный счетчик электрической цепи.
- •9. Расчет цепей постоянного тока при последовательном и параллельном соединении пассивных приемников.
- •10. Приборы магнитоэлектрической и электромагнитной схем. Магнитоэлектрическая система
- •Прибор магнитоэлектрической системы
- •Достоинства магнитоэлектрической системы
- •Недостатки магнитоэлектрической системы
- •Электромагнитная система
- •Прибор электромагнитной системы
- •Достоинства электромагнитной системы
- •Недостатки электромагнитной системы
- •11. Электрические цепи переменного тока, принципы получения переменной эдс.
- •12. Электрические измерения и приборы. Основные определения и термины. Методы измерений. Классификация средств измерений.
- •13. Действующие и среднее значения токов и напряжений в цепях переменного тока.
- •14. Цифро-аналоговые и аналогово-цифровые преобразователи.
- •15. Законы Ома и Кирхгофа для мгновенных значений токов и напряжений в цепях переменного тока.
- •16. Регистры, кольцевые счетчики. Счетчики с двоичным и недвоичным коэффициентами пересчета.
- •17. Расчет цепей переменного тока методом векторных диаграмм.
- •18. Последовательные цифровые устройства. Триггеры и их разновидности.
- •19. Расчет последовательных цепей переменного тока методом векторных диаграмм.
- •20. Комбинационные цифровые устройства. Мультиплексоры, демультиплексоры, дешифраторы, сумматоры.
- •21. Расчет параллельных цепей переменного тока методом векторных диаграмм.
- •22. Основные типы цифровых интегральных схем. Параметры цифровых ис.
- •23. Комплексный метод расчета параметров электрических цепей переменного тока.
- •24. Представление информации в цифровой форме. Составление логических функций и функциональных схем.
- •25. Явление резонанса в цепях переменного тока.
- •26. Транзисторные ключи на биполярных и полевых транзисторах. Аналоговые коммутаторы.
- •27. Трехфазные цепи переменного тока. Соединение приемников звездой и треугольником. Основные определения
- •2. Соединение в звезду. Схема, определения
- •3. Соединение в треугольник. Схема, определения
- •28. Импульсный режим работы электронных устройств. Генераторы импульса.
- •29. Нелинейные элементы электрических цепей и их характеристики. Графический метод расчета нелинейных цепей постоянного тока.
- •30. Генераторы гармонических колебаний.
- •2. Генератор lc-типа
- •31. Политический метод расчета нелинейных цепей.
- •32. Линейные преобразователи электрических сигналов на основе операционных усилителей
- •33. Магнитные цепи. Основные понятия и определения. Магнитный поток, индукция, напряженность. Магнитная проницаемость. Явление магнитного гистерезиса в веществе.
- •34. Методы расчета транзисторных усилителей.
- •35. Прямая и обратная задачи в расчетах магнитных цепей.
- •36. Усилители на транзисторах. Стабилизация начальной рабочей точки.
- •37. Уравнения Кирхгофа для магнитной цепи.
- •38. Классификация, основные параметры и характеристики усилителей. Обратная связь в усилителях.
- •39. Электромагнитные устройства. Принцип работы и основные аналитические соотношения для электромагнитов и электромагнитных реле.
- •40. Сглаживающие фильтры, стабилизаторы и инверторы в источниках вторичного электропитания.
- •41. Устройство и принцип работы трансформатора, его векторная диаграмма
- •Устройство и принцип работы
- •42. Выпрямительные схемы источников электропитания. Однополупериодные и двухполуперионые выпрямители.
- •43. Режим холостого хода трансформатора и его работа под нагрузкой.
- •44. Назначение и структура источников вторичного электропитания, их основные характеристики.
- •45. Устройство и принцип действия генератора постоянного тока эдс и электромагнитный момент. Способы возбуждения генераторов постоянного тока.
- •46. Операционные усилители, эквивалентная схема, основные характеристики и уравнения, интегральные микросхемы.
- •47. Двигатели постоянного тока. Регулирование скорости двигателей постоянного тока.
- •48. Основные свойтва, характеристики и типы тиринисторов. Динисторы и тринисторы.
- •49. Устройство и принцип работы асинхронного двигателя. Его характеристики.
- •50. Основные свойства, характеристики и типы полевых транзисторов.
- •51. Пуск и реверсирование асинхронных двигателей. Регулирование частоты вращения.
- •52. Устройство и принцип работы синхронного генератора. Его характеристики.
- •54. Основные свойства, характеристики и типы полупроводниковых диодов. Расчет электронных схем с диодами.
- •4.1.1. Выпрямление в диоде
- •4.1.2. Характеристическое сопротивление
- •4.1.4. Эквивалентная схема диода
- •55. Работа синхронной машины в режиме двигателя. Рабочие характеристики синхронного двигателя.
- •56.Краткие сведения о структуре полупроводников, электрические переходы в полупроводниках.
- •Свойства полупроводников.
- •Строение атомов полупроводников.
- •Электропроводность полупроводника.
- •Электронно-дырочная проводимость.
- •Электронная проводимость.
- •Дырочная проводимость.
Электропроводность полупроводника.
Рассмотрим упрощенный рисунок кристалла полупроводника, где атомы обозначаются красным шариком с плюсом, а межатомные связи показаны двумя линиями, символизирующими валентные электроны.
При температуре, близкой к абсолютному нулю полупроводник не проводит ток, так как в нем нет свободных электронов. Но с повышением температуры связь валентных электронов с ядрами атомов ослабевает и некоторые из электронов, вследствие теплового движения, могут покидать свои атомы. Вырвавшийся из межатомной связи электрон становится «свободным», а там где он находился до этого, образуется пустое место, которое условно называют дыркой.
Чем выше температура полупроводника, тем больше в нем становится свободных электронов и дырок. В итоге получается, что образование «дырки» связано с уходом из оболочки атома валентного электрона, а сама дырка становится положительнымэлектрическим зарядом равным отрицательному заряду электрона.
А теперь давайте рассмотрим рисунок, где схематично показано явление возникновения тока в полупроводнике.
Если приложить некоторое напряжение к полупроводнику, контакты «+» и «-», то в нем возникнет ток. Вследствие тепловых явлений, в кристалле полупроводника из межатомных связей начнет освобождаться некоторое количество электронов (синие шарики со стрелками). Электроны, притягиваясь положительным полюсом источника напряжения, будутперемещаться в его сторону, оставляя после себя дырки, которые будут заполняться другими освободившимися электронами. То есть, под действием внешнего электрического поля носители заряда приобретают некоторую скорость направленного движения и тем самым создают электрический ток.
Например: освободившийся электрон, находящийся ближе всего к положительному полюсу источника напряжения притягивается этим полюсом. Разрывая межатомную связь и уходя из нее, электрон оставляет после себя дырку. Другой освободившийся электрон, который находится на некотором удалении от положительного полюса, такжепритягивается полюсом и движется в его сторону, но встретив на своем пути дырку, притягивается в нее ядром атома, восстанавливая межатомную связь.
Образовавшуюся новую дырку после второго электрона, заполняет третий освободившийся электрон, находящийся рядом с этой дыркой (рисунок №1). В свою очередь дырки, находящиеся ближе всего к отрицательному полюсу, заполняются другими освободившимися электронами (рисунок №2). Таким образом, в полупроводнике возникает электрический ток.
Пока в полупроводнике действует магнитное поле, этот процесс непрерывен: нарушаются межатомные связи – возникают свободные электроны – образуются дырки. Дырки заполняются освободившимися электронами – восстанавливаются межатомные связи, при этом нарушаются другие межатомные связи, из которых уходят электроны и заполняют следующие дырки (рисунок №2-4).
Из этого делаем вывод: электроны движутся от отрицательного полюса источника напряжения к положительному, а дырки перемещаются от положительного полюса к отрицательному.
Электронно-дырочная проводимость.
В «чистом» кристалле полупроводника число высвободившихся в данный момент электронов равно числу образующихся при этом дырок, поэтому электропроводность такого полупроводника мала, так как он оказывает электрическому току большоесопротивление, и такую электропроводность называют собственной.
Но если в полупроводник добавить в виде примеси некоторое количество атомов других элементов, то электропроводность его повысится в разы, и в зависимости от структурыатомов примесных элементов электропроводность полупроводника будет электроннойили дырочной.