
- •1. Основные понятия и определения электротехники. Топологические параметры.
- •2. Электронные осциллографы Электронные осциллографы
- •3. Эквивалентные схемы для источников энергии. Источники эдс и источники тока.
- •4. Цифровые измерительные приборы
- •5. Закон Ома для участка цепи с эдс
- •6. Аналоговые электронные вольтметры.
- •7. Расчет разветвленных магнитных цепей на основе закона Кирхгофа.
- •8. Приборы электродинамической и ферродинамической систем. Однофазный индукционный счетчик электрической цепи.
- •9. Расчет цепей постоянного тока при последовательном и параллельном соединении пассивных приемников.
- •10. Приборы магнитоэлектрической и электромагнитной схем. Магнитоэлектрическая система
- •Прибор магнитоэлектрической системы
- •Достоинства магнитоэлектрической системы
- •Недостатки магнитоэлектрической системы
- •Электромагнитная система
- •Прибор электромагнитной системы
- •Достоинства электромагнитной системы
- •Недостатки электромагнитной системы
- •11. Электрические цепи переменного тока, принципы получения переменной эдс.
- •12. Электрические измерения и приборы. Основные определения и термины. Методы измерений. Классификация средств измерений.
- •13. Действующие и среднее значения токов и напряжений в цепях переменного тока.
- •14. Цифро-аналоговые и аналогово-цифровые преобразователи.
- •15. Законы Ома и Кирхгофа для мгновенных значений токов и напряжений в цепях переменного тока.
- •16. Регистры, кольцевые счетчики. Счетчики с двоичным и недвоичным коэффициентами пересчета.
- •17. Расчет цепей переменного тока методом векторных диаграмм.
- •18. Последовательные цифровые устройства. Триггеры и их разновидности.
- •19. Расчет последовательных цепей переменного тока методом векторных диаграмм.
- •20. Комбинационные цифровые устройства. Мультиплексоры, демультиплексоры, дешифраторы, сумматоры.
- •21. Расчет параллельных цепей переменного тока методом векторных диаграмм.
- •22. Основные типы цифровых интегральных схем. Параметры цифровых ис.
- •23. Комплексный метод расчета параметров электрических цепей переменного тока.
- •24. Представление информации в цифровой форме. Составление логических функций и функциональных схем.
- •25. Явление резонанса в цепях переменного тока.
- •26. Транзисторные ключи на биполярных и полевых транзисторах. Аналоговые коммутаторы.
- •27. Трехфазные цепи переменного тока. Соединение приемников звездой и треугольником. Основные определения
- •2. Соединение в звезду. Схема, определения
- •3. Соединение в треугольник. Схема, определения
- •28. Импульсный режим работы электронных устройств. Генераторы импульса.
- •29. Нелинейные элементы электрических цепей и их характеристики. Графический метод расчета нелинейных цепей постоянного тока.
- •30. Генераторы гармонических колебаний.
- •2. Генератор lc-типа
- •31. Политический метод расчета нелинейных цепей.
- •32. Линейные преобразователи электрических сигналов на основе операционных усилителей
- •33. Магнитные цепи. Основные понятия и определения. Магнитный поток, индукция, напряженность. Магнитная проницаемость. Явление магнитного гистерезиса в веществе.
- •34. Методы расчета транзисторных усилителей.
- •35. Прямая и обратная задачи в расчетах магнитных цепей.
- •36. Усилители на транзисторах. Стабилизация начальной рабочей точки.
- •37. Уравнения Кирхгофа для магнитной цепи.
- •38. Классификация, основные параметры и характеристики усилителей. Обратная связь в усилителях.
- •39. Электромагнитные устройства. Принцип работы и основные аналитические соотношения для электромагнитов и электромагнитных реле.
- •40. Сглаживающие фильтры, стабилизаторы и инверторы в источниках вторичного электропитания.
- •41. Устройство и принцип работы трансформатора, его векторная диаграмма
- •Устройство и принцип работы
- •42. Выпрямительные схемы источников электропитания. Однополупериодные и двухполуперионые выпрямители.
- •43. Режим холостого хода трансформатора и его работа под нагрузкой.
- •44. Назначение и структура источников вторичного электропитания, их основные характеристики.
- •45. Устройство и принцип действия генератора постоянного тока эдс и электромагнитный момент. Способы возбуждения генераторов постоянного тока.
- •46. Операционные усилители, эквивалентная схема, основные характеристики и уравнения, интегральные микросхемы.
- •47. Двигатели постоянного тока. Регулирование скорости двигателей постоянного тока.
- •48. Основные свойтва, характеристики и типы тиринисторов. Динисторы и тринисторы.
- •49. Устройство и принцип работы асинхронного двигателя. Его характеристики.
- •50. Основные свойства, характеристики и типы полевых транзисторов.
- •51. Пуск и реверсирование асинхронных двигателей. Регулирование частоты вращения.
- •52. Устройство и принцип работы синхронного генератора. Его характеристики.
- •54. Основные свойства, характеристики и типы полупроводниковых диодов. Расчет электронных схем с диодами.
- •4.1.1. Выпрямление в диоде
- •4.1.2. Характеристическое сопротивление
- •4.1.4. Эквивалентная схема диода
- •55. Работа синхронной машины в режиме двигателя. Рабочие характеристики синхронного двигателя.
- •56.Краткие сведения о структуре полупроводников, электрические переходы в полупроводниках.
- •Свойства полупроводников.
- •Строение атомов полупроводников.
- •Электропроводность полупроводника.
- •Электронно-дырочная проводимость.
- •Электронная проводимость.
- •Дырочная проводимость.
30. Генераторы гармонических колебаний.
Генераторы гармонических колебаний представляют собой электронные устройства, формирующие на своем выходе периодические гармонические колебания при отсутствии входного сигнала. Генерирование выходного сигнала осуществляется за счет энергии источника питания. Со структурной точки зрения генераторы представляют собой усилители электрических сигналов, охваченные ПОС.
Внешний входной сигнал отсутствует. На входе усилителя действует только выходной сигнал ОС UOC. А на входе ОС действует UВХОС=UВЫХ. Поэтому коэффициент усиления такой схемы
Условием, обеспечивающим наличие сигнала на выходе генератора при отсутствии внешнего входного сигнала является К→ ∞,то есть
При выполнении этого условия любой усилитель, охваченный ПОС становится генератором, на выходе его появляются колебания, независимые от входного сигнала (автоколебания). Явление возникновения автоколебаний в усилителе называется самовозбуждением.
Условие возникновения автоколебаний можно разделить на две составляющие:
1) Условие баланса амплитуд: К∙β=1. Физический смысл: результирующее усиление в контуре, состоящем из последовательного соединения усилителя и цепи ОС должно быть равно единице. Если цепь ОС ослабляет сигнал, то усилитель должен на 100% компенсировать это ослабление. То есть если в любом месте разорвать контур ПОС и на вход подать сигнал от внешнего источника, то пройдя по контуру К∙β с выхода разрыва цепи ОС вернется сигнал точно такой же амплитуды, что был подан на вход разрыва.
2) Условие баланса фаз: arg(K·β)=0. Физический смысл: результирующий фазовый сдвиг, вносимый усилителем и цепью ОС должен быть равен нулю (или кратен 2π). То есть при подаче сигнала на разрыв, вернувшийся сигнал будет иметь точно такую же фазу. При выполнении этого условия ОС будет положительна.
Для существования автоколебаний необходимо одновременное выполнение этих условий. Если эти условия выполняются не для одной частоты, а для целого спектра частот, то генерируемый выходной сигнал будет сложным (не гармоническим). Для обеспечения синусоидальности выходного сигнала генератор должен генерировать сигнал только одной единственной частоты. Для этого необходимо, чтобы условия возникновения автоколебаний выполнялись для единственной частоты, которая и будет генерироваться. Для этого делают К или β частотно-зависимыми. Как правило β имеет максимум β0 на некоторой частоте ω0. Поэтому на ω0 и коэффициент усиления будет иметь максимум К0. Величины К0 и β0 обеспечивают такими, чтобы они удовлетворяли условиям возникновения автоколебаний. Тогда при отклонении частоты от ω0 и условия возникновения автоколебаний выполнятся не будут, что приведет к затуханию колебаний этой частоты и на выходе генератора будут только гармонические колебания частоты ω0.
В зависимости от того, каким способом в генераторе обеспечивается условие баланса фаз и амплитуд, различают генераторы:
1) RC-типа;
2) LC-типа.
2. Генератор lc-типа
Такой
генератор строят на основе усилительного
каскада на транзисторе, включая в его
коллекторную цепь колебательный
LC-контур. Для создания ПОС используется
трансформаторная связь между обмотками
W1(имеющей
индуктивность L) и W2 (рис. 2.1).
Рис. 2.1 - Генератор LC-типа
Напряжение U2 является напряжением ОС. Оно связано с напряжением первичной обмотки W1 коэффициентом трансформации:
Коэффициент
трансформации в данном случае является
коэффициентом передачи ОС, показывая
какая часть напряжения
передается
на вход. Для выполнения баланса амплитуды
на частоте ω0 должно выполнятся равенство
Из этого условия рассчитывается необходимое число витков вторичной обмотки, чем обеспечивается условие баланса амплитуд. Для обеспечения баланса фаз необходимо обеспечить соответствующее включение начал и концов обмоток, чтобы ОС была положительной. Емкость С1 выбирают такой, чтобы ее сопротивление на частоте генерации было незначительным по сравнению с R2. Это исключает влияние сопротивления делителя на ток во входной цепи транзистора, создаваемый напряжением ОС. Назначение RЭ и СЭ такое же, как в обычном усилительном каскаде. LC-генераторы, также как и LC-избирательные усилители применяют в области высоких частот, когда требуются небольшие величины L и имеется возможность обеспечить высокую добротность LC-контура. А на низких и инфранизких частотах, когда построение LC-генератора затруднительно, используют RС цепи тех же типов, что и для избирательных усилителей.
3. RC- генератор с последовательно- параллельной RC-цепью
Рис. 3.1 - Принципиальная схема генератора с последовательно-параллельной RC-цепью на ОУ