
- •С.Н. Григорьев, а.Г. Схиртладзе, в.А. Скрябин, в.З. Зверовщиков, и.И. Воячек, а.Н.Машков резание материалов Учебник
- •Пенза 2012
- •Оглавление
- •Глава 1. Современные инструментальные материалы 12
- •Введение
- •Глава 1. Современные инструментальные материалы
- •1.1 Эксплуатационные свойства инструментальных материалов
- •1.2 Характеристика и область применения инструментальных материалов
- •1.3. Зарубежные марки быстрорежущих сталей и твердых сплавов
- •1.4. Минералокерамические и сверхтвёрдые инструментальные материалы
- •Основные понятия и термины
- •Вопросы для самоконтроля
- •Гл а в а 2. Элементы процесса резания и режущей части инструмента
- •2.1. Кинематические элементы и характеристики резания
- •2.2. Элементы лезвия инструмента и системы координатных плоскостей
- •2.3. Геометрические параметры инструмента
- •2.4. Элементы режима резания
- •2.5. Элементы срезаемого слоя и стружки
- •2.6. Свободное и несвободное резание
- •Основные понятия и термины
- •Вопросы для самоконтроля
- •Гл а в а 3. Процесс образования стружки при резании
- •3.1. Пластические деформации материалов при резании
- •3.2. Классификация стружек. Методы исследования процесса стружкообразования
- •3.3. Механизм образования сливной стружки
- •3.4. Наростобразование при резании металлов
- •3.5. Усадка стружки
- •Относительный сдвиг и коэффициент усадки стружки
- •Зависимость усадки стружки от различных факторов
- •Основные понятия и термины
- •Вопросы для самоконтроля
- •Гл а в а 4. Напряжённо-деформированное состояние материала и силы при резании
- •4.1. Напряжённо-деформированное состояние материала в зоне резания. Система сил
- •4.2. Факторы, влияющие на касательные напряжения, углы трения и сдвига
- •4.3. Силы на задней поверхности инструмента
- •4.4. Система сил, действующих на резец и заготовку
- •4.5. Факторы, влияющие на силы резания при точении
- •4.6. Расчёт сил резания при точении
- •4.7. Измерение сил резания
- •Основные понятия и термины
- •Вопросы для самоконтроля
- •Г л а в а 5. Теплообразование и температура в зоне резания
- •5.1. Образование и распределение тепла при резании. Температура в зоне резания
- •5.2. Факторы, влияющие на температуру в зоне резания. Оптимальная температура резания
- •5.3. Экспериментальное исследование тепловых процессов при резании
- •Основные понятия и термины
- •Вопросы для самоконтроля
- •Гл а в а 6. Износ и стойкость режущих инструментов
- •6.1. Виды и причины износа режущих инструментов
- •6.2. Износ лезвийных инструментов
- •6.3. Критерии износа и затупления режущих инструментов
- •6.4. Стойкость инструментов. Допускаемая скорость резания
- •Основные понятия и термины
- •Вопросы для самоконтроля
- •Г л а в а 7. Влияние свойств материалов на обрабатываемость резанием
- •7.1. Характеристики и оценка обрабатываемости материалов
- •7.2. Обрабатываемость конструкционных материалов
- •7.3. Методы повышения обрабатываемости материалов
- •Основные понятия и термины
- •Вопросы для самоконтроля
- •Г л а в а 8. Формирование геометрических и физико-механических параметров поверхности при резании
- •8.1. Понятие качества поверхностей деталей
- •8.2. Механизм образования шероховатости
- •8.3. Физико-механические свойства поверхностного слоя материала
- •8.4. Обеспечение эксплуатационных свойств поверхностей деталей при резании
- •Основные понятия и термины
- •Вопросы для самоконтроля
- •Гл а в а 9. Процессы сверления, зенкерования и развертывания
- •9.1. Особенности процесса резания при сверлении, зенкеровании и развертывании
- •9.2. Геометрические параметры спирального сверла
- •9.3. Элементы режима и силы резания при сверлении
- •9.4. Силы резания при сверлении
- •9.4. Методика расчета режима резания при сверлении
- •9.5. Процессы зенкерования и развертывания отверстий
- •9.6. Элементы режима и силы резания при зенкеровании и развертывании
- •Основные понятия и термины
- •Вопросы для самоконтроля
- •Гл а в а 10. Процесс фрезерования
- •10.1. Кинематические особенности процесса фрезерования
- •10.2. Геометрические элементы режущей части фрезы
- •10.3. Элементы режима резания и срезаемого слоя при фрезеровании
- •10.4. Сила резания и мощность фрезерования
- •Основные понятия и термины
- •Вопросы для самоконтроля
- •Г л а в а 11. Процесс шлифования
- •11.1. Особенности процесса резания при шлифовании
- •11.2. Шлифовальные материалы
- •11.3. Элементы режима резания при шлифовании
- •Основные понятия и термины
- •Вопросы для самоконтроля
- •Гл а в а 12. Процесс резания несвязанным шлифовальным материалом
- •12.1. Классификация и характеристики методов обработки несвязанным шлифовальным материалом
- •Вибрационный метод обработки деталей
- •Турбоабразивная обработка поверхностей деталей
- •Магнитно-абразивная обработка поверхностей деталей
- •Финишная обработка деталей уплотненным шлифовальным материалом
- •Полирование деталей в среде шлифовального материала
- •12. 2. Особенности процесса резания несвяэанным абразивным материалом
- •12.3. Силы и мощность резания при шпиндельной абразивной обработке
- •Интенсивность съема металла
- •Силы и мощность резания
- •Основные понятия и термины
- •Вопросы для самоконтроля
- •Гл а в а 13. Особенности обработки пластмасс резанием
- •13.1. Физические основы процесса резания пластмасс
- •13.2. Обрабатываемость пластмасс некоторыми способами лезвийной обработки
- •13.3. Особенности обработки пластмасс на отделочных операциях
- •Основные понятия и термины
- •Вопросы для самоконтроля
- •Гл а в а 14. Оптимизация режима резания при обработке деталей
- •14.1. Графоаналитический метод оптимизации режима резания
- •2. Выбрать материал и геометрические параметры режущего клина резца.
- •3. Оптимизировать подачу – s.
- •4. Рассчитать скорость резания Vр.
- •5. Рассчитать частоту вращения шпинделя станка и уточнить скорость резания.
- •7. Скорректировать подачу в зависимости от допустимых режущих свойств инструмента – Sр.
- •8. Проверить выбранный режим резания по мощности станка.
- •14.2. Оптимизация режима резания при одноинструментальной обработке на токарном станке с чпу модели 16к20ф3с32
- •14.3 Оптимизация режима резания при торцовом фрезеровании
- •14.4. Оптимизация обработки отверстий развертками
- •Основные понятия и термины
- •Вопросы для самоконтроля
- •Заключение
- •Список литературы
9.2. Геометрические параметры спирального сверла
Спиральное сверло имеет следующие геометрические и конструктивные элементы (рис. 9.2).
Рис. 9.2. Конструктивные элементы сверла
Рис. 9.3. Поверхности лезвий сверла и его режущие кромки
Две главные режущие кромки (см. рис. 9.3), расположенные на режущей части (заборном конусе), образуют двойной угол в плане при вершине 2φ, который у сверл из инструментальных сталей при обработке конструкционных материалов обычно равен 116…118°; для разных материалов он должен быть различным: для более твердых – больше, для более мягких – меньше. Например, при обработке жаропрочных и нержавеющих материалов максимальной стойкостью обладают сверла с углом 2φ = 125…135° (для глухого отверстия) и 2φ = 140° (для сквозных отверстий); при обработке эбонита, мрамора и других хрупких материалов угол 2φ = 80…90°; при сверлении титановых сплавов 2φ = 90…120°; при сверлении алюминия и алюминиевых сплавов 2φ = 130…140°.
Угол наклона поперечной кромки ψ измеряется между проекциями поперечной и главных режущих кромок на плоскость, перпендикулярную к оси сверла. При правильной заточке сверла угол ψ = 50…55°.
Наклон винтовой канавки, по которой сходит стружка, определяется углом ω, заключенным между осью сверла и касательной к винтовой линии по наружному диаметру сверла. Этот угол ω, называемый углом наклона винтовой канавкисверла, определяет величину переднего угла: с увеличением угла ω увеличивается передний угол и тем самым облегчается процесс стружкообразования. Наклон винтовой канавки у сверл берется от 18 до 30°. С увеличением угла ω уменьшается прочность сверла, вследствие чего у сверл малого диаметра он делается меньше, чем у сверл большого диаметра.
Геометрические параметры режущей части сверла. Углы режущих кромок сверла рассматривают в статическом состоянии и в процессе резания. Рассмотрим сверло как геометрическое тело в статической системе координат.
Статическая система координат– прямоугольная система координат с началом в рассматриваемой точке режущей кромки, ориентированная относительно направления скорости главного движения резания (рис. 9.4,а).
Основная плоскость PV –координатная плоскость, проведенная через рассматриваемую точку режущей кромки перпендикулярно направлению скорости главного движения резания в этой точке.
Плоскость резания Pn–координатная плоскость, касательная к режущей кромке в рассматриваемой точке и перпендикулярная основной плоскостиРV.
Главная секущая плоскостьPτ–координатная плоскость, перпендикулярная линии пересечения основной плоскости и плоскости резания.
Рабочая плоскость Рs – плоскость, в которой расположены направления скоростей V и Vs главного движения резания Dr и движения подачи Ds.
На рис. 9.5, адля периферийной точки режущей кромки показаны углы лезвиясверлав главнойPτ–Pτи нормальнойPн–Pнсекущих плоскостях, а на рис. 9.6 – углы лезвия для периферийной и произвольной точек режущей кромки в главных секущих (Pτ–PτиPτx–Pτx) и рабочих (Рs–РsиРsx–Рsx) плоскостях.
|
а) б) Рис. 9.4. Координатные плоскости при сверлении: а) статическая система координат; б) кинематическая система координат; PV – основная плоскость; Pn – плоскость резания; Pτ – главная секущая плоскость; Pн – нормальная секущая плоскость; Ps – рабочая плоскость
|
|
а) б) Рис. 9.5. Углы сверла: а) в статической системе координат; б) в кинематической системе координат |
Рис. 9.6. Статические углы сверла в главной секущей и рабочей плоскостях для различных точек режущей кромки
Главный передний угол γ – угол в главной секущей плоскостиPτ–Pτмежду передней поверхностьюAγлезвия и основной плоскостьюРV–РV.
Для произвольной точки режущей кромки, лежащей на диаметре Dx,будем иметь (рис 9.6):
,
(9.1)
где H– шаг винтовой канавки сверла, мм.
Так как в любой точке Xрежущей кромки шаг винтовой линии сверлаНостается постоянным, то можно написать
.
(9.2)
З
D2
D1
D
D
D1
.
(9.4)
Вдоль режущей кромки углы лезвия сверла являются переменными.
Задний угол в точках лезвия от периферии к перемычке увеличивается от 6…8° на периферии до 25…35° у перемычки.
Передний угол γ при резании стали изменяется от 18…30° у периферии сверла до нуля и даже до отрицательных значений у перемычки сверла. Угол наклона лезвия λ изменяется от 5…10° у периферии сверла до 30…45° у перемычки.