
Теория информации / Gray R.M. Entropy and information theory. 1990., 284p
.pdfEntropy and
Information Theory
ii

Entropy and
Information Theory
Robert M. Gray
Information Systems Laboratory
Electrical Engineering Department
Stanford University
Springer-Verlag
New York
iv
This book was prepared with LATEX and reproduced by Springer-Verlag from camera-ready copy supplied by the author.
°c 1990 by Springer Verlag
v
to Tim, Lori, Julia, Peter, Gus, Amy Elizabeth, and Alice
and in memory of Tino
vi
Contents
Prologue |
xi |
||
1 |
Information Sources |
1 |
|
|
1.1 |
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . |
1 |
|
1.2 |
Probability Spaces and Random Variables . . . . . . . . . . . . . |
1 |
|
1.3 |
Random Processes and Dynamical Systems . . . . . . . . . . . . |
5 |
|
1.4 |
Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . |
6 |
|
1.5 |
Standard Alphabets . . . . . . . . . . . . . . . . . . . . . . . . . |
10 |
|
1.6 |
Expectation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . |
11 |
|
1.7 |
Asymptotic Mean Stationarity . . . . . . . . . . . . . . . . . . . |
14 |
|
1.8 |
Ergodic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . |
15 |
2 |
Entropy and Information |
17 |
|
|
2.1 |
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . |
17 |
|
2.2 |
Entropy and Entropy Rate . . . . . . . . . . . . . . . . . . . . . |
17 |
|
2.3 |
Basic Properties of Entropy . . . . . . . . . . . . . . . . . . . . . |
20 |
|
2.4 |
Entropy Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . |
31 |
|
2.5 |
Conditional Entropy and Information . . . . . . . . . . . . . . . |
35 |
|
2.6 |
Entropy Rate Revisited . . . . . . . . . . . . . . . . . . . . . . . |
41 |
|
2.7 |
Relative Entropy Densities . . . . . . . . . . . . . . . . . . . . . . |
44 |
3 The Entropy Ergodic Theorem |
47 |
||
|
3.1 |
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . |
47 |
|
3.2 |
Stationary Ergodic Sources . . . . . . . . . . . . . . . . . . . . . |
50 |
|
3.3 |
Stationary Nonergodic Sources . . . . . . . . . . . . . . . . . . . |
56 |
|
3.4 |
AMS Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . |
59 |
|
3.5 |
The Asymptotic Equipartition Property . . . . . . . . . . . . . . |
63 |
4 |
Information Rates I |
65 |
|
|
4.1 |
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . |
65 |
|
4.2 |
Stationary Codes and Approximation . . . . . . . . . . . . . . . |
65 |
|
4.3 |
Information Rate of Finite Alphabet Processes . . . . . . . . . . |
73 |
vii
viii |
|
|
CONTENTS |
5 |
Relative Entropy |
77 |
|
|
5.1 |
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . |
. . . . . 77 |
|
5.2 |
Divergence . . . . . . . . . . . . . . . . . . . . . . . . . |
. . . . . 77 |
|
5.3 |
Conditional Relative Entropy . . . . . . . . . . . . . . . |
. . . . . 92 |
|
5.4 |
Limiting Entropy Densities . . . . . . . . . . . . . . . . |
. . . . . 104 |
|
5.5 |
Information for General Alphabets . . . . . . . . . . . . |
. . . . . 106 |
|
5.6 |
Some Convergence Results . . . . . . . . . . . . . . . . . |
. . . . . 116 |
6 |
Information Rates II |
119 |
|
|
6.1 |
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . |
. . . . . 119 |
|
6.2 |
Information Rates for General Alphabets . . . . . . . . |
. . . . . 119 |
|
6.3 |
A Mean Ergodic Theorem for Densities . . . . . . . . . |
. . . . . 122 |
|
6.4 |
Information Rates of Stationary Processes . . . . . . . . |
. . . . . 124 |
7 |
Relative Entropy Rates |
131 |
|
|
7.1 |
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . |
. . . . . 131 |
|
7.2 |
Relative Entropy Densities and Rates . . . . . . . . . . |
. . . . . 131 |
|
7.3 |
Markov Dominating Measures . . . . . . . . . . . . . . . |
. . . . . 134 |
|
7.4 |
Stationary Processes . . . . . . . . . . . . . . . . . . . . |
. . . . . 137 |
|
7.5 |
Mean Ergodic Theorems . . . . . . . . . . . . . . . . . . |
. . . . . 140 |
8 Ergodic Theorems for Densities |
145 |
||
|
8.1 |
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . |
. . . . . 145 |
|
8.2 |
Stationary Ergodic Sources . . . . . . . . . . . . . . . . |
. . . . . 145 |
|
8.3 |
Stationary Nonergodic Sources . . . . . . . . . . . . . . |
. . . . . 150 |
|
8.4 |
AMS Sources . . . . . . . . . . . . . . . . . . . . . . . . |
. . . . . 153 |
8.5Ergodic Theorems for Information Densities. . . . . . . . . . . . 156
9 |
Channels and Codes |
159 |
|
|
9.1 |
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . |
159 |
|
9.2 |
Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . |
160 |
|
9.3 |
Stationarity Properties of Channels . . . . . . . . . . . . . . . . . |
162 |
|
9.4 |
Examples of Channels . . . . . . . . . . . . . . . . . . . . . . . . |
165 |
|
9.5 |
The Rohlin-Kakutani Theorem . . . . . . . . . . . . . . . . . . . |
185 |
10 |
Distortion |
191 |
|
|
10.1 |
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . |
191 |
|
10.2 |
Distortion and Fidelity Criteria . . . . . . . . . . . . . . . . . . . |
191 |
|
10.3 |
Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . |
193 |
|
10.4 |
The rho-bar distortion . . . . . . . . . . . . . . . . . . . . . . . . |
195 |
|
10.5 |
d-bar Continuous Channels . . . . . . . . . . . . . . . . . . . . . |
197 |
|
10.6 |
The Distortion-Rate Function . . . . . . . . . . . . . . . . . . . . |
201 |
CONTENTS |
ix |
|
11 Source Coding Theorems |
211 |
|
11.1 |
Source Coding and Channel Coding . . . . . . . . . . . . . . . . |
211 |
11.2 |
Block Source Codes for AMS Sources . . . . . . . . . . . . . . . . |
211 |
11.3 |
Block Coding Stationary Sources . . . . . . . . . . . . . . . . . . |
221 |
11.4 |
Block Coding AMS Ergodic Sources . . . . . . . . . . . . . . . . |
222 |
11.5 |
Subadditive Fidelity Criteria . . . . . . . . . . . . . . . . . . . . |
228 |
11.6 |
Asynchronous Block Codes . . . . . . . . . . . . . . . . . . . . . |
230 |
11.7 |
Sliding Block Source Codes . . . . . . . . . . . . . . . . . . . . . |
232 |
11.8 |
A Geometric Interpretation of OPTA’s . . . . . . . . . . . . . . . |
241 |
12 Coding for noisy channels |
243 |
|
12.1 |
Noisy Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . |
243 |
12.2 |
Feinstein’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . |
244 |
12.3 |
Feinstein’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . |
247 |
12.4 |
Channel Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . |
249 |
12.5 |
Robust Block Codes . . . . . . . . . . . . . . . . . . . . . . . . . |
254 |
12.6 |
Block Coding Theorems for Noisy Channels . . . . . . . . . . . . |
257 |
12.7 |
Joint Source and Channel Block Codes . . . . . . . . . . . . . . . |
258 |
12.8 |
Synchronizing Block Channel Codes . . . . . . . . . . . . . . . . |
261 |
12.9 |
Sliding Block Source and Channel Coding . . . . . . . . . . . . . |
265 |
Bibliography |
275 |
|
Index |
|
284 |
x |
CONTENTS |