
- •Предисловие
- •Общие методические указания
- •Рабочая программа дисциплины
- •Введение
- •I. Основы строения вещества
- •II. Общие закономерности химических процессов
- •III. Общая характеристика химических элементов и их соединений
- •IV. Растворы и дисперсные системы. Электрохимические cистемы
- •Контрольные вопросы к экзамену
- •Перечень лабораторных работ
- •Выбор вариантов контрольной работы
- •1. Эквиваленты простых и сложных веществ. Закон эквивалентов
- •Контрольные задания
- •2. Строение атомов
- •Контрольные задания
- •3. Периодическая система элементов д.И. Менделеева
- •Контрольныезадания
- •4. Химическая связь и строение молекул. Конденсированное состояние вещества
- •Контрольные задания
- •5. Энергетика химических процессов (термохимические расчеты)
- •Контрольные задания
- •6. Химическое сродство
- •Контрольные задания
- •7. Химическая кинетика и химическое равновесие
- •Контрольные задания
- •8. Способы выражения концентрации растворов
- •Контрольные задания
- •9. Коллигативные свойства растворов
- •Контрольные задания
- •10. Ионно-молекулярные (ионные) реакции обмена
- •Контрольные задания
- •11. Гидролиз солями
- •Контрольные задания
- •12. Свойства дисперсных систем
- •Контрольные задания
- •13. Окислительно-восстановительные реакции
- •Контрольные задания
- •14. Электродные потенциалы и электродвижущие силы
- •Контрольные задания
- •15. Электролиз
- •Контрольные задания
- •16. Коррозия металлов
- •Контрольные задания
- •17. Комплексные соединения
- •Контрольные задания
- •Контрольные задания
- •19. Жесткость воды и методы её устранения
- •Контрольные задания
- •Контрольные задания
- •Контрольные задания
- •22. Органические соединения. Полимеры
- •Контрольные задания
- •Приложения
- •Список рекомендуемой литературы
- •Список использованной литературы
19. Жесткость воды и методы её устранения
Жесткость воды отражает содержание в ней ионов кальция и магния.
Жесткость, обусловленная наличием в воде гидрокарбонатов кальция и магния, называется временной, или карбонатной (Жвр). Жесткость, обусловленная хлоридами и сульфатами этих металлов, называется постоянной (Жп). Суммарная жесткость воды носит название общей жесткости. Жесткость воды (степень жесткости принято выражать в миллимолях ионов Са2+ или Mg2+ (или обоих ионов) в 1 дм3 или 1 кг воды – ммоль/дм3 или ммоль/кг.
Зная,
что молярные массы эквивалентов ионов
Са2+
и Mg2+
соответственно равны 20,04 и 12,16 мг/дм3,
можно рассчитать общую жесткость воды
(в ммоль/дм3):
.
Часто в расчетах жесткости используют формулу
где m – масса вещества, обусловливающего жесткость воды или применяемого для устранения жесткости воды, г; Мэкв – молярная масса эквивалента этого вещества (г/моль∙экв); V – объем воды (л); Ж – жесткость воды (моль/дм3).
Пример 1. Вычислить жесткость воды, зная, что в 500 л содержится 202,5 г Са(НСО3)2.
Решение.
Временная жесткость воды обусловлена наличием соли гидрокарбоната кальция и вычисляется:
Молярная масса эквивалента Ca(HCO3)2 равна
следовательно,
жесткость воды:
Пример 2. Сколько граммов СаSO4 содержится в 1м3 воды, если жесткость, обусловленная присутствием этой соли, равна 4 ммоль/дм3?
Решение.
Молярная
масса СаSO4
равна 136 г/моль; молярная масса эквивалента
равна:
Из формулы жесткости находим, сколько
граммов сульфата кальция содержится в
1 м3
(1м3
= 1000 дм3)
воды:
Пример 3. Сколько граммов соды надо прибавить к 500 л воды, чтобы устранить ее жесткость, равную 5 ммоль/дм3?
Решение.
Находим количество моль эквивалентов солей, обусловливающих жесткость воды из формулы:
Один из методов устранения жесткости воды – введение соды (Na2CO3). Согласно закону эквивалентов,
отсюда
находим массу соды для устранения
жесткости воды:
Пример 4. Вычислить карбонатную жесткость воды, зная, что на титрование 100 см3 этой воды, содержащей гидрокарбонат кальция, потребовалось 6,25 см3 0,08 н раствора НСl.
Решение.
Вычисляем нормальность раствора гидрокарбоната кальция. Обозначив количество моль эквивалентов растворенного вещества в 1л раствора, т.е. нормальность, через х, составляем пропорцию:
Таким образом, в 1 л исследуемой воды содержится 0,005∙1000= = 5 ммоль·экв гидрокарбоната кальция, или 5 ммоль/дм3 Са2+- ионов. Карбонатная жесткость воды равна 5 ммоль/дм3.
Карбонатную (временную) жесткость можно рассчитать умножением объема кислоты (V, мл), пошедшего на титрование на концентрацию кислоты:
Контрольные задания
541. Какую массу Na3РО4 надо прибавить к 500 л воды, чтобы устранить ее карбонатную жесткость, равную 5 ммоль/дм3?
Ответ: 118,3 г.
542. Какие соли обусловливают жесткость природной воды? Какую жесткость называют карбонатной, некарбонатной? Как можно устранить карбонатную, некарбонатную жесткость? Напишите уравнения соответствующих реакций. Чему равна жесткость воды, в 100 л которой содержится 14,632 г гидрокарбоната магния?
Ответ: 2 ммоль/дм3.
543. Вычислите карбонатную жесткость воды, зная, что для реакции с гидрокарбонатом кальция, содержащимся в 200 см3 воды, требуется 15 см3 0,08 н раствора HCl. Ответ: 6 ммоль/дм3.
544. В 1л воды содержится ионов магния 36,47 мг и ионов кальция 50,1 мг. Чему равна жесткость этой воды? Ответ: 5,5 ммоль/дм3.
545. Какую массу карбоната натрия надо прибавить к 400 л воды, чтобы устранить жесткость, равную 3 ммоль/дм3? Ответ: 63,6 г.
546. Вода, содержащая только сульфат магния, имеет жесткость 7 ммоль/дм3. Какая масса сульфата магния содержится в 300 л этой воды? Ответ: 126 г.
547. Вычислите жесткость воды, зная, что в 600 л ее содержится 65,7 г гидрокарбоната магния и 61,2 г сульфата кальция.
Ответ: 3 ммоль/дм3.
548. В 220 л воды содержится 11 г сульфата магния. Чему равна жесткость этой воды? Ответ: 0,83 ммоль/дм3.
549. Жесткость воды, в которой растворен только гидрокарбонат кальция, равна 4 ммоль/дм3. Какой объем 0,1 н раствора HCl потребуется для реакции с гидрокарбонатом кальция, содержащимся в 75 см3 этой воды? Ответ: 3 см3.
550. В 1м3 воды содержится 140 г сульфата магния. Вычислите жесткость этой воды. Ответ: 2,33 ммоль/дм3.
551. Вода, содержащая только гидрокарбонат магния, имеет жесткость 3,5 ммоль/дм3. Какая масса гидрокарбоната магния содержится в 200 дм3 этой воды? Ответ: 51,1 г.
552. К 1м3 жесткой воды прибавили 132,5 г карбоната натрия. Насколько понизилась жесткость? Ответ: на 2,5 ммоль/дм3.
553. Чему равна жесткость воды, если для ее устранения к 50 л воды потребовалось прибавить 21,2 г карбоната натрия?
Ответ: 8 ммоль/дм3.
554. Какая масса СаSО4 содержится в 200 л воды, если жесткость, обусловливаемая этой солью, равна 8 ммоль/дм3?
Ответ: 108,9 г.
555. Вода, содержащая только гидрокарбонат кальция, имеет жесткость 9 ммоль/дм3. Какая масса гидрокарбоната кальция содержится в 500 л воды? Ответ: 364,5 г.
556. Какие ионы надо удалить из природной воды, чтобы сделать ее мягкой? Введением каких ионов можно умягчить воду? Составьте уравнения соответствующих реакций. Какую массу Са(ОН)2 надо прибавить к 2,5 л воды, чтобы устранить ее жесткость, равную 4,43 ммоль/дм3? Ответ: 0,406 г.
557. Какую массу карбоната натрия надо прибавить к 0,1м3 воды, чтобы устранить жесткость, равную 4 ммоль/дм3? Ответ: 21,2 г.
558. К 100 л жесткой воды прибавили 12,95 г гидроксида кальция. На сколько понизилась карбонатная жесткость?
Ответ: на 3,5 ммоль/дм3.
559. Чему равна карбонатная жесткость воды, если в 1 л ее воды содержится 0,292 г гидрокарбоната магния и 0,2025 г гидрокарбоната кальция? Ответ: 6,5 ммоль/дм3.
560. Какую массу гидроксида кальция надо прибавить к 275 л воды, чтобы устранить ее карбонатную жесткость, равную 5,5 ммоль/дм3? Ответ: 56,06 г.
561. Сколько граммов Ca(OH)2 необходимо прибавить к 1000 л воды, чтобы удалить временную жесткость, равную 2,86 ммоль/дм3? Ответ: 106 г.
562. Чему равна временная жесткость воды, в 1л которой содержится 0,146 г гидрокарбоната магния? Ответ: 2 ммоль/дм3.
563. Жесткость воды, содержащей только гидрокарбонат кальция, равна 1,785 ммоль/дм3. Определить массу гидрокарбоната в 1л воды. Ответ: 144,7 мг.
564. Сколько карбоната натрия надо добавить к 5 л воды, чтобы устранить общую жесткость, равную 4,60 ммоль/дм3? Ответ: 1,22 г.
565. При кипячении 250 мл воды, содержащей гидрокарбонат кальция, выпал осадок массой 3,5 мг. Чему равна жесткость воды? Ответ: 0,28 ммоль/дм3.
566. В 100 л воды содержится 8,5 г хлорида кальция. Вычислите жесткость воды. Ответ: 1,53 ммоль/дм3.
567. Некарбонатная жесткость воды равна 5,3 ммоль/дм3. Рассчитайте, сколько Na3PO4 следует взять, чтобы умягчить 100 л такой воды. Ответ: 29 г.
568. Вычислите карбонатную жесткость воды, если в 5 л ее содержится 2,5 г гидрокарбоната магния и 1,3 г гидрокарбоната кальция. Ответ: 10,1 ммоль/дм3.
569. При обработке 0,5 л образца воды карбонатом натрия в осадок выпало 70 мг CaCO3. Чему равна жесткость воды, если она обусловлена только сульфатом кальция? Ответ: 2,8 ммоль/дм3.
570. Рассчитайте жесткость воды, если известно, что для ее устранения к 50 л воды добавили 18 г Na2CO3. Ответ: 6,8 ммоль/дм3.
20. р– ЭЛЕМЕНТЫ (…ns2np1-6)
К р – семейству относятся 30 элементов IIIA-VIIIA групп периодической системы и входят во второй и третий малые периоды, а также в четвертый – шестой большие периоды. У элементов IIIA группы появляется первый электрон на р–орбитали. В других группах IVA-VIIIA происходит последовательное заполнение р–подуровня до 6 электронов. Строение внешних электронных оболочек атомов элементов р–семейства ns2npа, где а = 1…6.
В периодах слева направо атомные и ионные радиусы р – элементов по мере увеличения заряда ядра уменьшаются, энергия ионизации и сродство к электрону в целом возрастают, электроотрицательность увеличивается, окислительная активность простых веществ и неметаллические свойства усиливаются.
В группах радиусы атомов и однотипных ионов в общем увеличиваются. Энергия ионизации при переходе от 2р – элементов к 6р – элементам уменьшается, так как по мере возрастания числа электронных оболочек усиливается экранирование заряда ядер электронами, предшествующими внешними электронами. С увеличением порядкового номера р–элемента в группе неметаллические свойства ослабевают, а металлические усиливаются.
На свойства р–элементов и их соединений оказывает влияние как появление новых подуровней на внешней электронной оболочке, так и заполнение внутренних электронных оболочек. р – элементы второго периода (В, С, N, O, F) резко отличаются от элементов нижеследующих периодов, так как, начиная с р–элементов третьего периода, появляется низколежащий свободный d-подуровень, на который могут переходить электроны с р – подуровня при возбуждении атома. Полностью заполненный 3d-подуровень у р–элементов четвертого периода (Ga, Ge, As, Se, Br) обусловливает отличие их свойств от элементов третьего периода. Максимальное заполнение 4f-подуровня в шестом периоде сказывается на различии свойств р–элементов шестого и пятого периодов.
Вдоль периода у р–элементов падает способность к образованию положительно заряженных ионов с зарядом, отвечающим номеру группы, и наоборот, способность к образованию отрицательных ионов с зарядом, равным (8 – № группы), возрастает.
р – элементы образуют двухатомные молекулы Э2, различающиеся по устойчивости. Наиболее устойчивы молекулы элементов второго периода (N2, O2, F2). При переходе от IIIA к IVA и VA группам устойчивость двухатомных молекул возрастает, а затем при переходе к VIIIА группе понижается. В группах сверху вниз прочность связи Э–Э уменьшается.
р – элементы второго периода (азот, кислород, фтор) обладают ярко выраженной способностью участвовать в образовании водородных связей. Элементы третьего и последующих периодов эту способность теряют.
При переходе от р–элементов второго периода к р–элементам третьего и последующих периодов сохраняются все типы связей, характерные для элементов второго периода, и появляются новые типы химических связей. В этом направлении увеличивается склонность элементов образовывать комплексные соединения.
При переходе вниз по группе устойчивость максимальной положительной степени окисления у р–элементов уменьшается и возрастает устойчивость низших степеней окисления. Так, для углерода устойчивая степень окисления +4, а для свинца +2, для алюминия +3, а для таллия +1.
Физические свойства простых веществ р–элементов сильно различаются. Одни вещества (кислород, азот) кипят и плавятся при очень низких температурах, другие (углерод, бор) – при очень высоких. По группам и периодам физические свойства изменяются немонотонно, и не всегда характер изменений легко связать со строением электронных оболочек и типом химических связей.
Все р–элементы и в особенности р–элементы второго и третьего периодов образуют многочисленные соединения между собой и с s-, d-, f- элементами.