
- •Введение
- •1. Строение атома и периодическая система элементов д.И. Менделеева
- •1.1. Строение атома
- •1.2. Квантово - механическое объяснение строения атома
- •1.3. Строение многоэлектронных атомов
- •1.4. Периодическая система элементов д.И. Менделеева и электронная структура атомов
- •1.5. Свойства элементов и периодическая система
- •Вопросы для самоконтроля
- •2. Строение молекул и химическая связь
- •2.1. Ковалентная связь. Метод валентных связей
- •2.2. Гибридизация атомных орбиталей
- •2.3. Ковалентные связи с участием атома углерода
- •2.4. Ионная химическая связь
- •2.5. Металлическая связь
- •2.6. Водородная связь
- •2.7. Поляризация связи и дипольный момент
- •2.8. Основные параметры молекул
- •2.9. Метод молекулярных орбиталей
- •3. Индивидуальные задания для самостоятельной подготовки студентов
- •3.1. Примеры решения типовых задач
- •3.2. Варианты домашних заданий
- •Оглавление
2.3. Ковалентные связи с участием атома углерода
В основном состоянии атом углерода С (1s22s22p2) имеет два неспаренных электрона, за счет которых могут образовывать только две общие электронные пары. Однако в большинстве своих соединений углерод четырехвалентен. Это объясняется тем, что атом углерода, поглощая небольшое количество энергии, переходит в возбужденное состояние, в котором он имеет 4 неспаренных электрона, т.е. способен образовывать четыре ковалентные связи и принимать участие в формировании четырех общих электронных пар:
6С 1 s
2 2s22 p 2 6С*1 s 2 2s12 p
3
-
2
↑↓
↑
↑
2
↑
↑
↑
↑
1
↑↓
p
1
↑↓
p
s
s
Энергия возбуждения компенсируется образованием химических связей, которое происходит с выделением энергии.
Атомы углерода обладают способностью к образованию трех видов гибридизации электронных орбиталей (sp3, sp2, sp) и образованию между собой кратных (двойных и тройных) связей (табл.7).
Таблица 7
Типы гибридизации и геометрия молекул
-
Связь
Тип
гибри-диза-ции
Харак-тер
связи
Валент-ный угол
Геометрия
молекул
Длина
связи, нм
Энер-гия связи,
кДж
При-меры
С – С
sp3
109o29’
тетраэдри-ческая
0,154
335
CH4
C = C
sp2
+
120о
плоская
0,134
592
C2H4
C Ξ C
sp
+2
180о
линейная
0,120
811
C2H2
Простая (одинарная) - связь осуществляется при sp3-гибридизации, при которой все четыре гибридных орбитали равноценны и имеют направленность в пространстве под углом 109о29’ друг к другу и ориентированы к вершинам правильного тетраэдра.
Рис. 19. Образование молекулы метана СН4
Если гибридные орбитали углерода перекрываются с шарообразными s-орбиталями атома водорода, то образуется простейшее органическое соединение метан СН4 – предельный углеводород (рис. 19).
Рис. 20. Тетраэдрическое расположение связей в молекуле метана
Большой интерес представляет изучение связей атомов углерода между собой и с атомами других элементов. Рассмотрим строение молекул этана, этилена и ацетилена.
Углы между всеми связями в молекуле этана почти точно равны между собой (рис. 21) и не отличаются от углов С-Н в молекуле метана.
Рис. 21. Молекула этана С2Н6
Следовательно, атомы углерода находятся в состоянии sp3-гибридизации.
Гибридизация электронных орбиталей атомов углерода может быть и неполной, т.е. в ней могут участвовать две (sp2–гибридизация) или одна (sp-гибридизация) из трех р - орбиталей. В этом случае между атомами углерода образуются кратные (двойная или тройная) связи. Углеводороды с кратными связями называются непредельными или ненасыщенными. Двойная связь (С = С) образуется при sp2 – гибридизации. В этом случае у каждого из атомов углерода одна из трех р - орбиталей не участвует в гибридизации, в результате образуются три sp2 – гибридные орбитали, расположенные в одной плоскости под углом 120о друг к другу, а негибридная 2р -орбиталь располагается перпендикулярно этой плоскости. Два атома углерода соединяются между собой, образуя одну -связь за счет перекрывания гибридных орбиталей и одну -связь за счет перекрывания р-орбиталей. Взаимодействие свободных гибридных орбиталей углерода с 1s-орбиталями атомов водорода приводит к образованию молекулы этилена С2Н4 (рис. 22), - простейшего представителя непредельных углеводородов.
Рис. 22. Образование молекулы этилена С2Н4
Перекрывание электронных орбиталей в случае - связи меньше и зоны с повышенной электронной плотностью лежат дальше от ядер атомов, поэтому эта связь менее прочная, чем - связь.
Тройная связь образуется за счет одной - связи и двух - связей. Электронные орбитали при этом находятся в состоянии sp-гибридизации, образование которой происходит за счет одной s- и одной р - орбиталей (рис. 23).
Рис. 23. Образование молекулы ацетилена С2Н2
Две гибридные орбитали располагаются под углом 180о относительно друг друга, а оставшиеся негибридные две р-орбитали располагаются в двух взаимно перпендикулярных плоскостях. Образование тройной связи имеет место в молекуле ацетилена С2Н2.
Особый вид связи возникает при образовании молекулы бензола (С6Н6) – простейшего представителя ароматических углеводородов.
Бензол содержит шесть атомов углерода, связанных между собой в цикл (бензольное кольцо), при этом каждый атом углерода находится в состоянии sp2 -гибридизации (рис. 24).
Все атомы углерода, входящие в молекулу бензола расположены в одной плоскости. У каждого атома углерода в состоянии sp2-гибридизации имеется еще одна негибридная р-орбиталь с неспаренным электроном, которая образует - связь (рис. 25).
Ось такой р - орбитали расположена перпендикулярно плоскости молекулы бензола.
Рис. 24. sp2 – орбитали молекулы бензола С6Н6
Рис.
25.
-
связи в молекуле бензола С6Н6
Все шесть негибридных р-орбиталей образуют общую связывающую молекулярную - орбиталь, а все шесть электронов объединяются в - электронный секстет.
Граничная поверхность такой орбитали расположена над и под плоскостью углеродного - скелета. В результате кругового перекрывания возникает единая делокализованная - система, охватывающая все углеродные атомы цикла. Бензол схематически изображают в виде шестиугольника с кольцом внутри, которое указывает на то, что имеет место делокализация электронов и соответствующих связей.