
- •Глава 1. Кристаллическое строение металлов
- •Глава 2 механические свойства металлов
- •2.1. Статические испытания
- •2.1.1.Испытания на растяжение.
- •2.2. Динамические испытания
- •2.2.1. Испытание на удар, Ударная вязкость и порог хладноломкости
- •2.2.2. Циклические испытания металлов. Кривая усталости. Предел выносливости.
- •2.2.3. Определение твёрдости
- •Глава 3. Пластическая деформация
- •3.1. Пластическая деформация. Влияние пластической деформации на свойства сталей. Явление наклёпа. Влияние наклёпа на структуру и свойства металлов. Механизмы пластической деформации.
- •3.2. Назначение рекристаллизационного отжига. Первичная и собирательная рекристаллизация. Понятие о критической степени деформации.
- •3.3. Холодная и горячая пластическая деформация.
- •Глава 4. Теория металлических сплавов
- •4.1. Основные понятия теории сплавов.
- •4.1.1. Компонент, фаза, чистые химические элементы.
- •4.1.2.Твёрдые растворы, виды твёрдых растворов. Условия образования твёрдых растворов.
- •4.1.3. Химические соединения.
- •4.2. Диаграммы фазового равновесия (диаграммы состояния)
- •4.2.1. Диаграмма состояния сплавов с неограниченной растворимостью компонентов в твёрдом состоянии
- •4.2.2. Диаграмма состояния сплавов с ограниченной растворимостью и эвтектикой
- •4.3. Связь диаграмм состояния со свойствами сплавов
- •Глава 5 железо и сплавы на его основе
- •5.1. Компоненты и фазы в системе Fe-c
- •5.2. Диаграмма состояния железо-цементит
- •5.3. Структуры железоуглеродистых сплавов в равновесном состоянии
- •5.4. Серые чугуны
- •5.5. Влияние углерода и постоянных примесей на свойства стали
- •Глава 6. Теория термической обработки
- •Глава 6 теория термической обработки
- •6.1.Превращение перлита в аустенит при нагреве
- •6.2. Превращения переохлаждённого аустенита
- •6.2.1. Диаграмма изотермического распада переохлаждённого аустенита
- •6.2.2. Перлитное превращение
- •6.2.3. Мартенситное превращение
- •6.2.4. Промежуточное (бейнитное) превращение
- •6.2.5. Превращения аустенита при непрерывном охлаждении
- •6.2.6. Влияние легирующих элементов на распад аустенита
- •Глава 7. Практика термической обработки стали
- •7.1 Отжиг
- •7.2. Нормализация
- •7.2.1. Классификация сталей по структуре в нормализованном состоянии
- •7.3. Закалка
- •7.4. Отпуск стали
- •7.4.1. Отпускная хрупкость
- •7.5. Закаливаемость и прокаливаемость стали
- •7.6. Способы поверхностного упрочнения сталей
- •7.6.1. Поверхностная закалка стали с индукционным нагревом (закалка твч)
- •7.6.2. Цементация
- •7.6.3. Азотирование
- •8. Стали
- •8.2. Маркировка сталей(5.04.2012)
- •8.2.1.Углеродистые конструкционные стали обыкновенного качества:
- •8.2.2. Углеродистые конструкционные качественные стали
- •8.2.3. Конструкционные легированные стали
- •8.2.4. Инструментальные стали:
- •8.3. Конструкционные стали общего назначения
- •8.4. Конструкционные стали специального назначения
- •8.4.1. Износостойкие стали
- •8.4.2. Стали, устойчивые против коррозии
- •8.4.2.1. Жаростойкие стали
- •8.4.2.2. Коррозионно-стойкие (нержавеющие) стали
- •8.4.3. Жаропрочные стали
- •8.4.3.1. Стали перлитного класса
- •8.4.3.2. Стали мартенситного (мартенситно-ферритного) класса:
- •8.5. Инструментальные стали
- •8.5.1. Стали для режущих инструментов
- •8.5.1.1. Углеродистые стали: у7…у13 (у8а…у13а).
- •8.5.1.3. Быстрорежущие стали
- •8.5.2. Стали для измерительных инструментов
- •8.5.3. Стали для штампов
- •9. Сплавы цветных металлов
- •9.1. Алюминий и его сплавы
- •9.1.1. Деформируемые алюминиевые сплавы, не упрочняемые термообработкой
- •9.1.2. Деформируемые алюминиевые сплавы, упрочняемые термообработкой
- •9.2. Медь и ее сплавы
- •9.2.1. Латуни
- •9.2.2. Бронзы
- •9.2.2.1. Оловянные бронзы
- •9.3. Подшипниковые сплавы
- •9.4. Титан и его сплавы
- •Пластмассы
- •9.2. Полимерные структуры Наполнители
- •9.3. Клеи
- •9.4. Герметизирующие материалы
- •9.5. Лакокрасочные материалы
6.2.2. Перлитное превращение
Перлитное превращение идет при переохлаждении аустенита в диапазоне температур 727˚С...500˚С. При этом происходит распад аустенита на феррито-цементитную смесь:
А0,8%С→Ф0,02%С+Ц6,67%С.
Механизм перлитного превращения – диффузионныйи включает два процесса:
диффузионное перераспределение углерода, приводящее к образованию цементита;
полиморфное превращение Feγ→Feα(ГЦК→ОЦК) с образованием феррита.
В итоге образуется феррито-цементитная смесь пластинчатого строения. В зависимости от температуры переохлаждения образуются феррито-цементитные смеси, отличающиеся степенью дисперсности (межпластинчатым расстоянием Δ0):перлит, сорбит, троостит(табл. 2). С увеличением степени переохлаждения увеличивается дисперсность структур, повышается прочность и твёрдость. Наибольшей пластичностью и вязкостью обладает структура сорбита.
Таблица 2
Продукты перлитного превращения
Ф-Ц смесь |
tпереохлаждения,°С |
Структура |
Межпластинчатое расстояние Δ0, мкм |
Твердость, НВ |
Перлит |
А1…650 |
|
0,6…1,0 |
180…250 |
Сорбит |
650…550 |
|
0,25…0,3 |
250…350 |
Троостит |
550…500 |
|
0,1…0,15 |
350…450 |
6.2.3. Мартенситное превращение
Мартенситное превращение протекает в интервале температур Мн-Мк(рис. 33).
Механизм мартенситного превращения – бездиффузионный. При непрерывном быстром охлаждении аустенита со скоростью выше критической (VКР-критическая скорость закалки– минимальная скорость охлаждения для получения мартенсита) диффузии углерода не происходит, идет только полиморфное γ→α превращение:
Feγ(C)0,8%C→ Feα(C)0,8%C.
Образуется мартенсит– пересыщенный твёрдый раствор углерода в α-железе.
Кристаллическая решётка мартенсита - тетрагональная (Рис.34), в ней отношение периодов с/а≠1. Чем больше в мартенсите углерода, тем больше степень тетрагональности (с/а).
Рис.34. Кристаллическая решетка мартенсита
Мартенсит – структура закаленной стали, обладает высокой твердостью. Это объясняется искажениями кристаллической решётки, вызванными повышенным содержанием в ней углерода, увеличением плотности дислокаций до 1012см-2. Чем больше в мартенсите углерода, тем выше его твердость. Твердость мартенсита стали с содержанием углерода 0,8% – 63…65HRC.
Мартенсит имеет игольчатое строение (рис. 35).
Рис. 35. Строение мартенсита: а – схема, б – микроструктура
Основные особенности мартенситного превращения:
превращение А→М идет по бездиффузионному механизму;
превращение А→М идёт с увеличением объёма, что вызывает значительные остаточные напряжения;
мартенситное превращение не идёт до конца, в структуре сохраняется остаточный аустенит (АОСТ).
Количество АОСТзависит от содержания углерода и легирующих элементов в стали, которые влияют на положение точек начала и конца мартенситного превращения (рис. 36). При содержании углерода более 0,6% МКопускается в область отрицательных температур. Чем больше углерода и легирующих элементов, тем ниже МНи МКи тем больше в структуре остаточного аустенита.
Рис. 36. Влияние содержания углерода (сплошные линии) и легирующих элементов (пунктирные линии) на температуру мартенситных точек МН и МК