
- •И.С. Колпащикова, а.Ф. Бетнев, е.М. Алов функциональные производные углеводородов
- •Удк 547
- •Удк 547
- •150023, Ярославль, Московский пр., 88
- •150000, Ярославль, ул. Советская, 14а
- •1. Спирты
- •1.1. Физические свойства
- •Сравнение физических свойств спиртов и углеводородов
- •1.2. Химические свойства
- •1.2.1. Реакции с участием связи o−h
- •1.2.2. Реакция с участием связи r–oh
- •1.2.3. Окисление, дегидрирование
- •1.3. Способы получения
- •1.3.1. Гидратация алкенов
- •1.3.2. Гидролиз галогеналканов
- •1.3.3. Синтез с помощью реактива Гриньяра
- •1.3.4. Гидроборирование-окисление алкенов
- •1.3.5. Восстановление карбонильных соединений
- •1.3.6. Брожение сахаров
- •2. Фенолы
- •2.1. Физические свойства
- •Физические свойства фенолов
- •2.2. Химические свойства
- •2.2.1. Кислотность
- •2.2.2. Фенолы и феноксид-ионы – нуклеофильные реагенты
- •2.2.3. Электрофильное замещение в ядре
- •2.2.4. Замещение гидроксигруппы в нитрофенолах
- •2.2.5. Окисление
- •2.2.6. Восстановление
- •3.3. Способы получения
- •4.1. Химические свойства
- •4.2. Способы получения
- •4.2.1. Превращение галогенгидринов под действием оснований
- •4.2.2. Окисление алкенов гидропероксидами (реакция Прилежаева)
- •5. Карбонильные соединения
- •5.1. Строение и физические свойства
- •5.2. Химические свойства
- •5.2.1. Нуклеофильное присоединение синильной кислоты, бисульфита натрия, реактива Гриньяра, ацетиленидов
- •5.2.2. Нуклеофильное присоединение - отщепление g–nh2 и спиртов
- •5.2.3. Нуклеофильное присоединение, нуклеофил – карбанион. Альдольная конденсация
- •Реакции, родственные альдольной конденсации
- •5.2.4. Нуклеофильное присоединение – реакция окисления-восстановления
- •5.2.5. Галогенирование кетонов - реакции с участием карбанионов
- •5.2.6. Взаимодействие альдегидов и кетонов с пентахлоридом фосфора
- •5.2.7. Восстановление
- •5.2.8. Окисление
- •5.3. Способы получения
- •Названия ацилов и ацилатов некоторых карбоновых кислот
- •6.1. Строение и физические свойства
- •6.2. Химические свойства
- •6.2.1. Реакции карбоновых кислот, сопровождающиеся разрывом о–н-связи. Кислотность
- •6.2.2. Реакции, сопровождающиеся разрывом связи с-он. Превращение в функциональные производные
- •6.2.3. Реакции замещения у -углеродного атома.
- •6.2.4. Восстановление кислот
- •7.1.2. Реакции замещения группы х у карбонильного атома углерода
- •7.1.3. Реакции сложного эфира по -углеродному атому
- •7.1.4. Восстановление производных кислот
- •8. Жиры. Воски
- •9. СульфОновые кислоты
- •9.1. Химические свойства
- •9.1.1. Кислотность. Образование солей
- •9.1.2. Превращение в производные кислот
- •Константы кислотности бензолсульфоновой и бензойной кислот и их амидов
- •9.1.3. Реакция замещения сульфогруппы
- •9.1.4. Электрофильное замещение в кольце – seAr
- •9.2. Способы получения
- •10. Дикарбоновые кислоты
- •10.1. Кислотные свойства
- •Физические свойства дикарбоновых кислот
- •10.2. Поведение при нагревании
- •10.3. Способы получения
- •11. Нитросоединения
- •11.1. Строение и физические свойства
- •Некоторые физические свойства нитрометана и ацетона
- •11.2. Химические свойства
- •11.3. Способы получения
- •12.2. Химические свойства
- •12.2.1. Основность
- •12.2.2. Реакции с участием аминогруппы
- •12.2.3. Замещение в кольце ароматических аминов
- •12.2.4. Реакции аминов с азотистой кислотой
- •12.3. Способы получения
- •12.3.1. Восстановление азотсодержащих соединений:
- •12.3.2. Взаимодействие галогенпроизводных с аммиаком или аминами
- •12.3.3. Взаимодействие спиртов с аммиаком или аминами
- •12.3.4. Восстановительное аминирование
- •12.3.5. Расщепление амидов по Гофману
- •13. Диазосоединения. Соли диазония
- •13.1. Свойства солей диазония
- •1. Синтез п-нитроанилинового красного.
- •2. Синтез метилоранжа
- •14. Кетокислоты
- •Физические свойства некоторых кетокислот
- •15. Оксикислоты
- •Физические свойства некоторых оксикислот
- •16. ,-Непредельные карбонильные соединения
- •17. Аминокислоты
- •17.1. Кофигурация аминокислот
- •17.2. Кислотно-основные свойства
- •Аминокислоты
- •17.3. Способы получения
- •О г л а в л е н и е
- •И.С. Колпащикова, а.Ф. Бетнев, е.М. Алов функциональные производные углеводородов
1.2.3. Окисление, дегидрирование
Первичные спирты можно окислить до альдегидов действием К2Сr2О7 + H2SO4, если одновременно с окислением вести отгонку легко окисляющихся альдегидов, кипящих при более низкой температуре, чем исходные спирты.
При нагревании первичных спиртов с водным раствором перманганата калия окисление идет до карбоновых кислот; выделить промежуточный продукт окисления – альдегид – не удается.
Вторичные спирты окисляются до кетонов действием перманганата калия или хромовой кислотой.
Дальнейшее окисление кетона возможно только в жестких условиях, т.к. при этом происходит разрыв углерод-углеродной связи.
Третичные спирты в присутствии кислот превращаются в алкены, которые далее легко окисляются. В щелочной и нейтральной средах третичные спирты не окисляются.
Превращение первичных спиртов в альдегиды, вторичных – в кетоны можно осуществлять, нагревая пары спирта до температуры 200-300 оС над медным катализатором – реакция дегидрирования.
1.3. Способы получения
1.3.1. Гидратация алкенов
Присоединение воды к алкенам происходит в присутствии кислых катализаторов (серная, фосфорная кислоты, оксид алюминия или другой носитель, обработанный кислотами). Реакция идет по механизму электрофильного присоединения АЕ.
Поскольку реакция электрофильного присоединения протекает через стадию образования карбокатиона, возможна перегруппировка с образованием наиболее устойчивого карбокатиона.
1.3.2. Гидролиз галогеналканов
Гидролиз галогеналканов проводят при нагревании с водным раствором щелочей. Реакция протекает по механизму SN1 или SN2 в зависимости от строения галогеналкана.
Если реакция протекает по механизму SN1, возможна перегруппировка с образованием наиболее устойчивого карбокатиона.
1.3.3. Синтез с помощью реактива Гриньяра
Магнийорганические соединения (реактив Гриньяра) присоединяются к карбонильным соединениям по двойной связи углерод – кислород.
Для синтеза первичных спиртов используют в качестве карбонильного соединения муравьиный альдегид. Для получения вторичных спиртов в качестве карбонильного соединения используют соответствующий альдегид. В случае синтеза третичных спиртов исходное карбонильное соединение – кетон.
Для получения первичных спиртов, содержащих на два атома углерода больше, чем в магнийорганическом исходном соединении, используют оксид этилена.
Третичные спирты можно также получить взаимодействием магнийгалогеналкилов со сложными эфирами. Реакция идет в две стадии: сначала происходит реакция замещения с образованием кетона, а затем в реакцию с кетоном вступает новая молекула магнийгалогеналкила.
Сложные эфиры муравьиной кислоты в этих условиях образуют вторичные спирты.
1.3.4. Гидроборирование-окисление алкенов
Алкены взаимодействуют с дибораном В2Н6 с образованием алкилборана. Диборан - димер гипотетического борана ВН3 - в рассматриваемой реакции действует как ВН3.
Бор атакует атом углерода подобно протону в реакции гидратации - таким образом, что положительный заряд возникает на более алкилированном углероде, и при этом создается наиболее полная возможность для его распределения.
Бор, получающий -электроны двойной связи алкена, передает водород с парой электронов на электронодефицитный углерод. Направление гидроборирования определяется тем же правилом, что и электрофильное присоединение: реакция протекает через образование наиболее устойчивой частицы.
Триалкилбораны затем окисляют гидропероксидом в присутствии щелочи.
В реакции гидроборирования-окисления предпочтительным продуктом реакции будет не тот спирт, который образуется в реакции гидратации алкена.