
- •И. С. Колпащикова, а. Ф. Бетнев, е. М. Алов сборник задач по органической химии
- •1. Указания к выполнению домашней работы
- •2. Алканы
- •2.1. Изомерия
- •2.2. Конформации - изобразить проекции Ньюмена
- •2.3. Строение и температура кипения
- •2.4. Синтез Вюрца
- •2.5. Механизм радикального замещения: Механизм, расчет теплот реакций (2) и (3), медленная стадия – на примере углеводородов, которые в медленной стадии образуют один углеводородный радикал
- •2.6. Галогенирование высших алканов: строение радикалов, образующихся в медленной стадии, сравнение их устойчивости и легкости образования
- •2.7. Расчет процентного состава моногалогензамещенных, образующихся в реакции галогенирования алканов, или сравнение активностей алканов в реакции моногалогенирования
- •2.8. Цепочка превращений (сульфохлорирование, сульфоокисление, нитрование, электролиз, реакция Вюрца, галогенирование алканов
- •3. Алкены
- •3.1. Вывод структурных изомеров
- •3.2. Строение и устойчивость
- •3.3. Механизм электрофильного присоединения
- •3.4. Реакция электрофильного присоединения, протекающая с перегруппировкой
- •3.5. Озонолиз
- •3.6. Полимеризация
- •3.7. Способы получения и химические превращения
- •3.8. Синтез алкенов и их химические превращения
- •3.9. Установление строения соединений по их свойствам
- •3.10. Задача на стехиометрический расчет
- •4. Диены. Алкины
- •4.1. Структурные изомеры диеновых углеводородов
- •4.2. Сравнение длины, энергий, дипольных моментов связей
- •4.3. Электрофильное присоединение к диенам
- •4.4. Полимеризация, озонолиз полимера
- •4.5. Реакция Дильса-Альдера
- •4.6. Свойства алкина как кислоты, реакция с солями более слабых кислот
- •4.7. Реакция гидратации алкинов
- •4.8. Цепочка химических превращений
- •4.9. Синтез алкинов
- •4.10. Установление строения соединений по их свойствам
- •5. Арены. Гетероциклы
- •5.1. Ароматичность, критерии ароматичности
- •5.2. Механизм электрофильного замещения в ядре
- •5.3. Соединения с различными ориентантами в порядке изменения реакционной способности (4 соединения)
- •5.4. Механизм ориентирующего влияния определенной группы в seAr
- •5.5. Совместное влияние двух групп (согласованная и несогласованная ориентация)
- •5.6. Синтез замещенных аренов на основе бензола
- •5.7. Цепочка химических превращений
- •5.8. Электрофильное замещение в конденсированных многоядерных углеводородах
- •5.9. Физико-химические свойства гетероциклов
- •5.10. Реакции гетероциклов
- •6. Галогеналканы. Галогенарены
- •6.1. Методы синтеза галогеналканов и галогенаренов
- •6.2. Механизм нуклеофильного замещения
- •6.3. Cила нуклеофила
- •6.4. Растворитель
- •6.5. Уходящая группа
- •6.6. Стереохимия
- •6.7. Перегруппировка
- •6.8. Конкурирующие реакции
- •6.9. Элиминирование
- •6.10. Реакционная способность галогенов в соединениях, содержащих группировки
- •6.11. Цепочка химических превращений
- •6.12. Синтез и химические превращения галогеналканов
- •6.13. Реакции нуклеофильного замещения в галогенаренах
- •6.14. Стехиометрический расчет
- •7. Спирты. Фенолы. Простые эфиры
- •7.1. Спирты: строение - температура кипения
- •7.2. Спирты, фенолы: строение – кислотность
- •7.3. Получение спиртов на основе магнийорганических соединений
- •7.4. Гидратация алкенов, гидролиз галогеналканов, гидроборирование
- •7.5. Подбор исходных соединений для получения спиртов магнийорганическим синтезом, окисление спиртов
- •7.6. Превращение в простые эфиры
- •7.7. Превращение в сложные эфиры
- •7.8. Взаимодействие спиртов с галогенводородами
- •7.9. Элиминирование
- •7.10. Установление строения спирта по его химическим свойствам
- •7.11. Реакция Вильямсона
- •7.12. Реакция расщепления простого эфира
- •7.13. Получение фенолов щелочным плавом, гидролизом галогенбензола, кумольный метод
- •7.14. Реакции фенолов в ароматическом ядре и в группе – он
- •7.15. Установление строения фенола по его химическим свойствам
- •8. Карбонильные соединения
- •8.1. Получение ароматических альдегидов и кетонов
- •8.2. Получение алифатических альдегидов и кетонов
- •8.3. Реакция Кучерова, пиролиз солей карбоновых кислот
- •8.4. Подвижность α-водородного атома, нуклеофильное присоединение hcn, спиртов, гидросульфита натрия
- •8.5. Нуклеофильное присоединение производных аммиака, роль катализатора
- •8.6. Альдольная конденсация, другие реакции с участием карбанионов
- •8.7. Альдольная конденсация с участием соединений других классов
- •8.8. Получение спиртов с помощью альдольной конденсации
- •8.9. Реакция Канниццаро
- •8.10. Реакция окисления
- •8.11. Химические свойства карбонильных соединений
- •9. Карбоновые и сульфоновые кислоты
- •9.1. Окисление спиртов, превращение насыщенной кислоты в -амино-, гидрокси-, ненасыщенную или двухосновную кислоту через -галогензамещенную
- •9.2. Синтез карбоновых кислот (магнийорганический и нитрильный синтез)
- •9.3. Алкилирование бензольного ядра и последующее окисление алкилароматического углеводорода
- •9.4. Строение и кислотность
- •9.5. Цепочка химических превращений, свойства кислот и их производных
- •9.6. Механизм реакций этерификации, гидролиза, реакционная способность
- •9.7. Сравнение поведения карбонильной группы карбоновой кислоты и кетона, сравнение реакционной способности ацильного и насыщенного углеродов
- •9.8. Получение и превращение сульфоновой кислоты
- •9.9. Установление строения карбоновой или сульфоновой кислоты
- •10. Амины
- •10.1. Получение алифатических аминов реакцией восстановления нитрилов, алкилированием аммиака и аминов и восстановительным аминированием
- •10.2. Строение и основность
- •10.3. Получение ароматических аминов и их превращение
- •10.4. Превращение аминов в соли диазония и реакции солей диазония с выделением азота
- •10.5. Получение замещенных ароматических соединений на основе солей диазония
- •10.6. Получение азокрасителя
- •10.7. Подбор исходных соединений для синтеза азокрасителя
- •Библиографический список
- •150023, Ярославль, Московский пр., 88
6.8. Конкурирующие реакции
676. Укажите, какой путь синтеза более предпочтителен для получения этил-трет-пентилового эфира:
а) синтез Вильямсона;
б) присоединение трет-пентилового спирта к этилену в присутствии минеральной кислоты.
677. Предложите комбинацию субстрата и нуклеофила, которая позволила бы получить 4,4-диметил-2-пентин с лучшим выходом (учтите возможность протекания конкурирующей реакции).
678. Предложите комбинацию субстрата и нуклеофила, которая позволила бы получить пентилизопропиловый эфир с лучшим выходом (учтите возможность протекания конкурирующей реакции).
679. Предложите комбинацию субстрата и нуклеофила, которая позволила бы получить бензилизопропиловый эфир с лучшим выходом (учтите возможность протекания конкурирующей реакции).
680. Предложите лучшую комбинацию субстрата и нуклеофила, которая позволит Вам получить 1-(4-метил-2-пентинил)бензол с максимальным выходом (обратите внимание на возможность протекания конкурирующей реакции).
681. При взаимодействии изопропилбромида с этоксидом натрия образуется этилизопропиловый эфир (20 %) и пропен (80 %). Объясните полученный результат, дайте определение конкурирующим реакциям.
682. Предложите лучшую комбинацию субстрата и нуклеофила, которая позволит Вам получить этил-втор-бутиловый эфир с максимальным выходом (обратите внимание на возможность протекания конкурирующей реакции).
683. Предложите лучшую комбинацию субстрата и нуклеофила, которая позволит Вам получить 2,6-диметил-3-гептин с максимальным выходом (обратите внимание на возможность протекания конкурирующей реакции).
684. Объясните результаты следующих взаимодействий:
685. Предложите лучшую комбинацию субстрата и нуклеофила, которая позволит Вам получить 2,2-диметил-3-гексин с максимальным выходом (обратите внимание на возможность протекания конкурирующей реакции).
686. Объясните результаты следующих взаимодействий:
687. В реакции 1-бромбутана с бутилсульфидом натрия (н-С4Н9SNa) образуется тиоэфир, в таких же условиях 1-бромбутан реагирует с бутоксидом натрия н-С4Н9ОNa с образованием дибутилового эфира, но с меньшим выходом. Напишите уравнения реакций, дайте объяснение.
688. Предложите комбинацию субстрата и нуклеофила, которая позволила бы получить 2-метил-3-гексин с лучшим выходом (учтите возможность протекания конкурирующей реакции).
689. Анализ продукта взаимодействия трет-пентилбромида со смесью (в скобках указаны массовые доли) С2Н5ОН (80 %) и Н2О (20 %) указывает на образование трех соединений: 2-метил-2-бутанола (60 %), 2-метил-2-бутена (32 %), 2-метил-1-бутена (8 %). Напишите уравнения реакций, укажите механизмы. Какие реакции называются конкурирующими?
690. Предложите лучшую комбинацию субстрата и нуклеофила, которая позволит Вам получить бензил-втор-бутиловый эфир с максимальным выходом (обратите внимание на возможность протекания конкурирующей реакции).
6.9. Элиминирование
691. (1S,2R)-1-бром-1,2-дифенилпропан образует в условиях реакции Е2 только один геометрический изомер. Рассмотрите механизм реакции, укажите пространственное строение этого изомера, используя проекции Ньюмена.
692. Рассмотрите механизм Е2 на примере взаимодействия 2-бромбутана с этоксиданионом в этиловом спирте. Используя проекции Ньюмена, рассмотрите стереохимию реакции. Какой пространственный изомер будет главным продуктом реакции?
693. Объясните результаты реакций: элиминирование Е2 ментилхлорида приводит исключительно к 2-ментену:
;
при нагревании ментилхлорида в этиловом спирте в отсутствие основания образуются 3-ментен – 68 % и 2-ментен – 32 %
694. Рассмотрите механизм элимирования 2-бромпентана. Изобразите строение исходного соединения, переходного состояния и продукта реакции, используя проекции Ньюмена.
695. В реакции элимирования мезо-3,4-дибромгексана главным продуктом является (Е)-изомер. Рассмотрите механизм реакции, объясните полученные результаты, используя проекции Ньюмена.
696. Объясните, почему при дегидрогалогенировании 2-хлорбутана образуется транс-2- бутен и цис-2-бутен в соотношении 6:1. Рассмотрите механизм реакции, используя проекции Ньюмена.
697. В реакции мезо-2,3-дибромбутана с этоксиданионом образуется (Е)-2-бром-2-бутен. Рассмотрите механизм реакции, объясните стереохимию процесса, используя проекции Ньюмена.
698. Дайте объяснение следующим результатам элиминирования:
699. Среди продуктов Е2-элиминирования (2S,3R)-2-бром-3-метилпентана обнаружены два геометрических изомера, образующихся по правилу Зайцева. Какой изомер образуется в большем количестве? Назовите его по Е,Z-номенклатуре. Рассмотрите механизм реакции, используя проекции Ньюмена.
700. В реакции Е2-элиминирования (2S,3R)-2-бром-3-фенилпентана по правилу Зайцева образуются два геометрических изомера. Какой изомер образуется в большем количестве? Каково его пространственное строение? Рассмотрите механизм реакции, используя проекции Ньюмена.
701. Е2-элиминирование (1S,2R)-1-бром-1,2-дифенилпропана дает только один геометрический изомер. Рассмотрите механизм реакции, используя проекции Ньюмена.
702. При действии метоксида натрия в метиловом спирте на 2-иодгексан образуются изомеры (мас. доли): 63 % транс-2-гексена, 18 % цис-2-гексена и 19 % 1-гексена. Рассмотрите механизм реакции, используя проекции Ньюмена, дайте объяснение полученным результатам.
703. Из всех возможных изомеров 1,2,3,4,5,6-гексахлорциклогексана один подвергается дегидрогалогенированию основанием значительно медленнее, чем другие. Какой изомер малореакционноспособен? Рассмотрите механизм элиминирования.
704. (1R,2R)-1-бром-1,2-дифенилпропан в условиях реакции Е2 отщепляет бромоводород только с образованием (Z)-1,2-дифенилпропена, (Е)-изомер не образуется. Рассмотрите механизм реакции, дайте объяснение, используя проекции Ньюмена.
705. Из двух стереоизомеров 2-фенилциклогексилтозилата один в 10000 раз быстрее другого будет превращаться в 1-циклогексенилбензол. Изобразите его строение, рассмотрите механизм реакции.