
- •1. Определение гидравлики. Основные понятия и определения. Сплошная среда.
- •2. Основные физические свойства жидкостей.
- •3. Силы, действующие в жидкости. Гидростатическое давление - определение.
- •4. Давление абсолютное, избыточное и вакуумметрическое.
- •5. Свойства гидростатического давления.
- •6. Эпюры гидростатического давления.
- •7. Дифференциальные уравнения равновесия жидкости (уравнения Эйлера).
- •8. Основное дифференциальное уравнение гидростатики.
- •9. Основное уравнение гидростатики (закон Паскаля).
- •10 Геометрическое и энергетическое понятия основного уравнения гидростатики.
- •11. Поверхности равного давления
- •12. Относительный покой жидкости
- •3.1.2 Относительный покой при вращении вокруг вертикальной оси
- •13. Сила давления жидкости на плоскую стенку
- •14.Приборы дл измерения давления
- •15. Гидростатический парадокс
- •16. Сила давления на криволинейную поверхность. Тело давления
- •17. Закон Архимеда
- •18. Равновесие тела в покоящейся жидкости
- •19.Определение толщины стенок цилиндрических труб
- •20.Идеальная и реальная жидкости. Закон Ньютона о внутреннем трении
- •22. Гидравлические элементы потока
- •23. Методы определения движения жидкости (метод Лагранжа и метод Эйлера).
- •24 Уравнение неразрывности (уравнение сохранения массы)
- •25. Расход жидкости (массовый, объемный, весовой).
- •26. Уравнение Бернулли для струйки идеальной жидкости. Геометрический и физический смысл уравнения Бернулли.
- •27. Гидравлический и пьезометрический уклоны.
- •28 Графическое представление уравнения Бернулли для струйки идеальной и реальной жидкости.
- •30. Графическое представление уравнения Бернулли для потока идеальной и реальной жидкости.
- •31. Примеры использования уравнения Бернулли (трубка Пито, Пито-Прандтля, расходомеры и т.Д.)
- •3) Расходомер Вентури.
- •4) Формула Торричелли
- •6) Водоструйный насос
- •7)Ракета
- •32. Классификация гидравлических потерь
- •33.Структура потока в области местных сопротивлений
- •34. Эквивалентная длина
- •35. Режимы движения жидкости. Основные понятия. Критерий Рейнольдса
- •36. Основное уравнение равномерного движения
- •37. Эпюры скоростей при ламинарном и турбулентном режимах движения жидкости
- •38. Определение эквивалентной шероховатости. Гидравлически гладкие и шероховатые поверхности
- •39.Метод наложения потерь. Коэффициент сопротивления системы
- •Коэффициент сопротивления системы
- •40. Кавитация.
- •41 Определение гидравлического удара. Прямой и непрямой гидравлический удар. Скорость распространения ударной волны.
- •42.Назначение и классификация трубопроводов.
- •43.Гидравлические характеристики трубопровода (график зависимости потерь напора в трубопроводе от пропускаемого расхода).
- •44.Определение экономически выгодного диаметра трубопровода (график).
17. Закон Архимеда
Закон Архимеда формулируется следующим образом: на тело, погружённое в жидкость (или газ), действует выталкивающая сила, равная весу вытесненной этим телом жидкости (или газа). Сила называется силой Архимеда:
где
— плотностьжидкости (газа),
— ускорение
свободного падения, а
— объём погружённого тела (или часть
объёма тела, находящаяся ниже поверхности).
Если тело плаваетна поверхности или равномерно движется
вверх или вниз, то выталкивающая сила
(называемая также архимедовой силой)
равна по модулю (и противоположна по
направлению) силе тяжести, действовавшей
на вытесненный телом объём жидкости
(газа), и приложена кцентру
тяжестиэтого объёма.
Тело плавает, если
сила Архимеда уравновешивает силу
тяжести тела.
Следует заметить, что тело должно быть полностью окружено жидкостью (либо пересекаться с поверхностью жидкости). Так, например, закон Архимеда нельзя применить к кубику, который лежит на дне резервуара, герметично касаясь дна.
Что касается тела, которое находится в газе, например в воздухе, то для нахождения подъёмной силы нужно заменить плотность жидкости на плотность газа. Например, шарик с гелием летит вверх из-за того, что плотность гелия меньше, чем плотность воздуха.
Закон Архимеда можно объяснить при помощи разности гидростатических давленийна примере прямоугольного тела.
где PA, PB — давления в точках A и B, ρ — плотность жидкости, h — разница уровней между точками A и B, S — площадь горизонтального поперечного сечения тела, V — объём погружённой части тела.
18. Равновесие тела в покоящейся жидкости
Тело, погруженное (полностью или частично) в жидкость, испытывает со стороны жидкости суммарное давление, направленное снизу вверх и равное весу жидкости в объеме погруженной части тела. Pвыт = ρжgVпогр
Для однородного тела плавающего на поверхности справедливо соотношение
где:
V
-
объем плавающего тела; ρm
-
плотность тела.
Существующая теория плавающего тела довольно обширна, поэтому мы ограничимся рассмотрением лишь гидравлической сущности этой теории.
Способность плавающего тела, выведенного из состояния равновесия, вновь возвращаться в это состояние называется остойчивостью. Вес жидкости, взятой в объеме погруженной части судна называют водоизмещением, а точку приложения равнодействующей давления (т.е. центр давления) - центром водоизмещения. При нормальном положении судна центр тяжести С и центр водоизмещения d лежат на одной вертикальной прямой O'-O", представляющей ось симметрии судна и называемой осью плавания (рис.2.5).
Пусть под влиянием внешних сил судно наклонилось на некоторый угол α, часть судна KLM вышла из жидкости, а часть K'L'M', наоборот, погрузилось в нее. При этом получили новое положении центра водоизмещения d'. Приложим к точке d' подъемную силу R и линию ее действия продолжим до пересечения с осью симметрии O'-O". Полученная точка m называется метацентром, а отрезок mC = h называется метацентрической высотой. Будем считать h положительным, если точка m лежит выше точки C, и отрицательным - в противном случае.
Рис. 2.5. Поперечный
профиль судна
Теперь рассмотрим условия равновесия судна:
1)если h > 0, то судно возвращается в первоначальное положение; 2)если h = 0, то это случай безразличного равновесия; 3) если h<0, то это случай неостойчивого равновесия, при котором продолжается дальнейшее опрокидывание судна.
Следовательно, чем ниже расположен центр тяжести и, чем больше метацентрическая высота, тем больше будет остойчивость судна.