
- •В. И. Сысун
- •Содержание.
- •1.Элементы электронных устройств.
- •Электронные лампы.
- •1.1.1. Ламповый диод, триод, тетрод, пентод.
- •1.1.2. Некоторые лампы свч диапазона.
- •1.1.3. Газоразрядные приборы.
- •1.2. Полупроводниковые элементы.
- •1.2.1.Полупроводниковые диоды.
- •1.2.2. Биполярные транзисторы.
- •1.2.3.Тиристоры.
- •1.2.4.Полевые транзисторы.
- •1.2.5. Полупроводниковые приборы как элементы интегральных микросхем.
- •2.Трансформаторы.
- •2.1. Потери в трансформаторе.
- •Уравнение трансформатора, векторная диаграмма.
- •2.3. Ток холостого хода и напряжение короткого замыкания. Типичные параметры силовых трансформаторов.
- •3.Электрические машины.
- •3. 1. Электрические машины постоянного тока.
- •3.1.1. Устройство машины постоянного тока.
- •3.1.2. Режим – генератора.
- •3.1.3. Режим двигателя.
- •3.1.4. Внешние характеристики генераторов и двигателей.
- •3.1.5. Коллекторные двигатели переменного тока.
- •3.2. Синхронные электрические машины переменного тока.
- •Выпрямители и инверторы промышленной частоты.
- •5. Электронные усилители.
- •5.1. Классификация и основные характеристики усилителей.
- •5.2. Принцип действия усилителя.
- •5.3. Обратная связь в усилителях.
- •5.3.1. Коэффициент усиления усилителя с обратной связью.
- •5.3.2. Особенности усилителя с отрицательной обратной связью.
- •5.4.Усилители постоянного тока.
- •Узкополосные (резонансные) усилители.
- •5.6.Усилители мощности.
- •5.7. Дифференциальный усилитель.
- •Инвертирующий усилитель.
- •Неинвертирующий усилитель.
- •5.9. Шумы в усилителях.
- •6. Генераторы электрических колебаний.
- •6.1. Автогенератор в виде усилителя с положительной обратной связью.
- •6.3 Автогенератор в виде контура с отрицательным дифференциальным сопротивлением (туннельный диод).
- •6.5 Генераторы шумовых сигналов.
- •6.6. Генераторы релаксационных (импульсных) колебаний.
- •7. Цифровые электронные устройства.
- •7.1. Элементы цифровой логики.
- •7.2. Реализация сложных логических функций на интегральных микросхемах.
- •7.3. Упрощение логических выражений с помощью диаграмм Карно-Вейча.
- •7.4. Последовательные цифровые устройства.
- •7.5. Счётчики.
- •7.6. Регистры.
- •7.7. Комбинационные цифровые устройства.
- •7.8 Импульсные генераторы на цифровых микросхемах.
- •Список литературы.
- •185640, Петрозаводск, пр. Ленина, 33
6.3 Автогенератор в виде контура с отрицательным дифференциальным сопротивлением (туннельный диод).
Второй
идеей получения незатухающих колебаний
является внесение в колебательный
контур отрицательного дифференциального
сопротивления. Свободные колебания в
контуре описываются выражением .
При добавлении в контур последовательного
сопротивления Rд
Rэкв=rк+Rд,
где rк
– собственное сопротивление контура
(сопротивление индуктивности). Если
Rд<0
и Rдrк
, то Rэкв
0
и колебание в контуре затухать не будут.
Рис.6.8.
При
параллельном дифференциальном
сопротивлении
и при Rд<0
и
также Rэкв
0. В качестве дифференциального
сопротивления применяют туннельные
диоды, лавинно – пролётные диоды (ЛПД)
и диоды Ганна (ДГ). Схемы генераторов на
туннельных диодах приведены на рис.6.8.
Изменением напряжения питания диод
устанавливается на середину падающего
участка характеристики (точка U0).
Генераторы на туннельных диодах используются в сверхвысокочастотной области. Анализ показывает, что генератор на усилителе с положительной обратной связью также можно трактовать как генератор в виде контура с отрицательным дифференциальным сопротивлением, которым является транзистор или лампа с положительной обратной связью. (Увеличение коллекторного тока в транзисторе сопровождается увеличением напряжения на базе и соответственно уменьшением коллекторного напряжения).
6.4 Стабилизация частоты в автогенераторах.
Наиболее важным требованием, предъявляемым к автогенераторам, является высокая стабильность частоты выходных колебаний. Это связано с тем, что во время работы автогенератора частота колебаний может изменяться под воздействием различных дестабилизирующих факторов: изменений температуры, влажности и напряжения питания, наличия внешних электромагнитных полей, механических воздействий, что проявляется в изменениях величин индуктивностей, емкостей и сопротивлений, входящих в состав колебательных контуров и частотно- избирательных RC-цепей.
Относительная нестабильность частоты определяется коэффициентом нестабильности f'/fp или f'/fk. При расчете коэффициентов нестабильности используют следующие формулы:
для LC-генераторов f'/fp=-0.5(L/L+C/C); для RC-генераторов f'/fk=(R/R+C/C).
Здесь параметры L, C, R — величины изменений индуктивностей, емкостей и сопротивлений от номинальных значений. В схемах автогенераторов гармонических (часто и импульсных) колебаний применяют два основных способа стабилизации частоты: параметрический и кварцевый.
Параметрический способ стабилизации частоты заключается в ослаблении влияния дестабилизирующих факторов и подборе высокочастотных и прецизионных элементов колебательных контуров автогенераторов. Для исключения влияния температуры на параметры усилительных элементов автогенераторы в отдельных случаях помещают в термостаты. Уменьшение влияния механических воздействий обеспечивает применение печатного монтажа и проводов индуктивностей, вжигаемых в керамику. Параметрическая стабилизация частоты позволяет снизить нестабильность до 10-5 (уход частоты на f' =10 Гц при частоте генерируемых колебаний f = 1 МГц).
Кварцевая стабилизация частоты основана на применении в электрических схемах вместо LC-контуров кварцевого резонатора, что позволяет снизить нестабильность частоты колебаний автогенератора до 10-7 (отклонение частоты на f'=0,1 Гц при частоте генерируемых колебаний f=1 МГц). Кварцевый резонатор (сокращенно кварц) представляет собой помещенную в кварцедержатель тонкую пластинку минерала кварца, грани которой определенным образом ориентированы по отношению к осям кристалла и металлизированы тонким слоем серебра. Известно, что при воздействии на кварцевую пластинку переменного электрического поля в ней возникают упругие механические колебания (обратный пьезоэффект), приводящие, в свою очередь, к появлению электрических зарядов на гранях пластинки. Кварц можно рассматривать как электромеханическую колебательную систему, по эквивалентной схеме совпадающую с обычным колебательным LC-контуром (рис.6.9.а).
Рис.6.9.
Добротность
кварцевого резонатора достигает сотен
тысяч, тогда как у колебательного контура
она не превышает 300...400. Механическая
прочность и слабая зависимость частотных
свойств от температуры обусловливают
достаточно высокую стабильность частоты
кварцевых резонаторов. При расчетах
кварцевый резонатор представляют
эквивалентной схемой, в которой элементы
LQ,
CQ
и RQ
характеризуют, соответственно,
индуктивность, емкость и омические
потери собственно кварца. Емкость Сок
отражает наличие кварцедержателя.
Зависимость реактивного сопротивления
кварцевого резонатора от частоты x(f)
приведена на
рис.6.9.б). Она имеет два резонанса:
последовательный на частоте f1
и параллельный
на частоте f2.
Последовательный
резонанс обеспечивают элементы LQ
и СQ
отражающие резонансную частоту кварца
.
Параллельный резонанс в устройствах с
кварцевым резонатором практически не
используется.