
- •В. И. Сысун
- •Содержание.
- •1.Элементы электронных устройств.
- •Электронные лампы.
- •1.1.1. Ламповый диод, триод, тетрод, пентод.
- •1.1.2. Некоторые лампы свч диапазона.
- •1.1.3. Газоразрядные приборы.
- •1.2. Полупроводниковые элементы.
- •1.2.1.Полупроводниковые диоды.
- •1.2.2. Биполярные транзисторы.
- •1.2.3.Тиристоры.
- •1.2.4.Полевые транзисторы.
- •1.2.5. Полупроводниковые приборы как элементы интегральных микросхем.
- •2.Трансформаторы.
- •2.1. Потери в трансформаторе.
- •Уравнение трансформатора, векторная диаграмма.
- •2.3. Ток холостого хода и напряжение короткого замыкания. Типичные параметры силовых трансформаторов.
- •3.Электрические машины.
- •3. 1. Электрические машины постоянного тока.
- •3.1.1. Устройство машины постоянного тока.
- •3.1.2. Режим – генератора.
- •3.1.3. Режим двигателя.
- •3.1.4. Внешние характеристики генераторов и двигателей.
- •3.1.5. Коллекторные двигатели переменного тока.
- •3.2. Синхронные электрические машины переменного тока.
- •Выпрямители и инверторы промышленной частоты.
- •5. Электронные усилители.
- •5.1. Классификация и основные характеристики усилителей.
- •5.2. Принцип действия усилителя.
- •5.3. Обратная связь в усилителях.
- •5.3.1. Коэффициент усиления усилителя с обратной связью.
- •5.3.2. Особенности усилителя с отрицательной обратной связью.
- •5.4.Усилители постоянного тока.
- •Узкополосные (резонансные) усилители.
- •5.6.Усилители мощности.
- •5.7. Дифференциальный усилитель.
- •Инвертирующий усилитель.
- •Неинвертирующий усилитель.
- •5.9. Шумы в усилителях.
- •6. Генераторы электрических колебаний.
- •6.1. Автогенератор в виде усилителя с положительной обратной связью.
- •6.3 Автогенератор в виде контура с отрицательным дифференциальным сопротивлением (туннельный диод).
- •6.5 Генераторы шумовых сигналов.
- •6.6. Генераторы релаксационных (импульсных) колебаний.
- •7. Цифровые электронные устройства.
- •7.1. Элементы цифровой логики.
- •7.2. Реализация сложных логических функций на интегральных микросхемах.
- •7.3. Упрощение логических выражений с помощью диаграмм Карно-Вейча.
- •7.4. Последовательные цифровые устройства.
- •7.5. Счётчики.
- •7.6. Регистры.
- •7.7. Комбинационные цифровые устройства.
- •7.8 Импульсные генераторы на цифровых микросхемах.
- •Список литературы.
- •185640, Петрозаводск, пр. Ленина, 33
3. 1. Электрические машины постоянного тока.
3.1.1. Устройство машины постоянного тока.
Машина состоит из неподвижной части статора и вращающейся части – якоря (ротора) (риc.3.1). Статор – кольцевой сплошной магнитопровод (станина), на внутренней стороне которого расположена одна или несколько пар магнитных полюсов из стальных пластин и намотанные на них обмотки возбуждения. В машинах малой мощности иногда обмотки возбуждения отсутствуют, а статор представляет собой постоянный магнит с полюсами. В машинах большой мощности для уменьшения искрения на коллекторе якоря между главными полюсами устанавливают дополнительные полюса.
Рис.3.1. Устройство электрической машины постоянного тока.
l-коллектор: 2-щетки; 3-сердечиик якоря; 4 -сердечник главного полюса; 5 - полюсная катушка; 6 - станина; 7 – подшипниковый щит; 8 - вентилятор; 9- обмотка якоря.
Якорь сердечника состоит из сердечника с пазами, в которых уложена обмотка коллектора, и вала. Сердечник набирается из штампованных листов электротехнической стали толщиной 0,35 или 0,5мм, покрытых изолирующим лаком.
Обмотка якоря состоит из секций в виде многовитковой рамки с током. Концы секций прикрепляются к медным пластинам коллектора, укрепленных на изоляторе, сидящем на валу, как и сердечник якоря. К коллектору подсоединяется внешняя цепь с помощью неподвижных меднографитовых щеток, укрепленных в щеткодержателях и прижимаемых к коллектору с помощью пружин.
Вал коллектора закрепляется в боковых крышках статора с помощью подшипников, так что между полюсами статора и вращающимся сердечником якоря имеется равномерный зазор порядка или меньше 1 мм.
3.1.2. Режим – генератора.
Рассмотрим
односекционную обмотку якоря при работе
в режиме генератора. Якорь вращается
внешним устройством (двигатель внутреннего
сгорания, паровая, газовая, гидравлическая
или ветряная турбина) так что проводники
имеют тангенциальную скорость
(рис.3.2). В результате на отпайке секции
на паре коллекторных пластин возникает
ЭДС
,
где
- общая длина продольной части обмотки
секции. Эта ЭДС снимается с помощью
щеток и подается в внешнюю цепь с
нагрузкойRH.
Рис. 3.2. Односекционная обмотка якоря при работе в режиме генератора.
При замыкании
внешней цепи в нагрузке протекает ток
,
гдеRi
– внутреннее сопротивление обмотки
секции. Как только в обмотке возникает
ток, т.е. движение электронов, на обмотку
начинает действовать тормозящая сила
.
Для преодоления этой силы от механического
приводного двигателя требуется мощность
,
т.е. равная вырабатываемой электрической
мощности.
Реальная мощность двигателя за счет трения должна быть больше. За счет этих механических потерь, электрических потерь в обмотках и магнитных потерь в сердечнике якоря на гистерезис и вихревые токи КПД генератора снижается до 80-95%, причем более высокий КПД соответствует машинам большей мощности.
Кроме тормозящей силы ток в якоре создает дополнительное магнитное поле перпендикулярное магнитному полю обмотки возбуждения, что сдвигает результирующее поле для генераторов по ходу вращения, для двигателей – против вращения. Это явление называют реакцией якоря и требует сдвига плоскости щеток на коллекторе, что при изменении нагрузки невозможно. Кроме того, под полюсным наконечником магнитное поле становится неоднородным, усиливающимся в сторону вращения и ослабляющим с другой стороны. Это также приводит к дополнительному искрению на коллекторе.
Для борьбы с реакцией якоря в мощных машинах в продольные пазы полюсов укладывают проводники, последовательно соединенные с якорем, создающие магнитное поле, противоположное магнитному полю якоря.