
- •Департамент образования и молодежной политики
- •Оглавление
- •Предисловие
- •1. Введение. Классификация элементов систем автоматики Основные понятия и определения
- •Обзор развития, современное состояние и значение элементов и технических средств автоматики
- •Основные принципы управления и регулирования
- •2. Типовые структуры и средства асу тп Обобщенная блок-схема асу тп. Комплекс типовых функций
- •Локальные системы контроля, регулирования и управления
- •Автоматизированные системы управления технологическими процессами
- •Принципы функциональной и топологической децентрализации
- •3. Типизация, унификация и агрегатирование средств асу тп Основные сведения
- •Унифицированные сигналы устройств автоматизации
- •Последовательная передача данных
- •Параллельная передача данных
- •Агрегатные комплексы
- •4. Функциональные схемы автоматизации Общие сведения
- •Изображение технологического оборудования и коммуникаций
- •Примеры построения условных обозначений приборов и средств автоматизации на функциональных схемах
- •Позиционные обозначения приборов и средств автоматизации
- •Примеры выполнения функциональных схем автоматизации
- •Последовательность чтения функциональных схем автоматизации
- •5. Автоматические регуляторы систем автоматики Общие сведения
- •Структурные схемы автоматических регуляторов
- •6. Электронные элементы систем автоматики Электронные компоненты
- •Резисторы
- •Конденсаторы
- •Катушки индуктивности
- •Полупроводниковые диоды
- •Биполярные транзисторы
- •Полупроводниковые тиристоры
- •Программируемые логические контроллеры
- •7. Электромагнитные устройства автоматики Электромагниты
- •Электромагнитные реле
- •Типовые релейные схемы
- •Синтез и минимизация дискретных схем логического управления
- •8. Выбор элементов систем автоматики Общие сведения
- •Выбор промышленных приборов и средств автоматизации
- •9. Трансформаторы Принцип действия и конструкция
- •Основные режимы работы и соотношения в трансформаторе
- •10. Измерительные преобразователи Общие сведения
- •Основные характеристики датчиков систем автоматики
- •11. Датчики температуры Общие сведения
- •Манометрические термометры
- •Термометры сопротивления
- •Термоэлектрические преобразователи
- •12. Датчики угловых перемещений Общие сведения
- •Шифраторы углового перемещения (положения)
- •13. Датчики давления Общие сведения
- •Классификация измерительных преобразователей давления
- •Пружинные приборы
- •Тензометрические измерительные преобразователи
- •Пьезоэлектрические измерительные преобразователи
- •14. Датчики уровня жидкостей и сыпучих материалов Общие сведения
- •Уровнемеры поплавковые, буйковые, акустические, ультразвуковые, радиоизотопные, емкостные, дифманометрические
- •Датчики-реле уровня поплавковые, емкостные, индуктивные, радиоизотопные, фотоэлектрические, акустические, мембранные и работающие на принципе проводимости
- •15. Технические средства измерения и контроля углового перемещения Тахогенераторы. Общие сведения
- •Синхронные тахогенераторы
- •Асинхронные тахогенераторы
- •Индукторные тахогенераторы
- •16. Технические средства измерения и контроля расхода материалов Общие сведения
- •Объемные счетчики
- •Скоростные счетчики
- •Расходомеры переменного перепада давления (дроссельные расходомеры)
- •Расходомеры обтекания
- •Расходомеры переменного уровня
- •Электромагнитные расходомеры
- •17. Технические средства измерения и контроля уровня среды Визуальные средства измерений уровня
- •Поплавковые средства измерений уровня
- •Буйковые средства измерений уровня
- •Гидростатические средства измерений уровня
- •Электрические средства измерений уровня
- •Акустические средства измерений уровня
- •Ультразвуковые средства измерений уровня
- •Радарные средства измерений уровня
- •Измерения уровня с помощью магнитных погружных зондов
- •Вибрационные сигнализаторы уровня
- •18. Исполнительные механизмы и устройства систем автоматики Общие сведения
- •Иу электрические, пневматические и гидравлические
- •Электрические исполнительные устройства
- •Основные характеристики эиу с электродвигателями
- •Позиционные эиу
- •19. Управление вентильными преобразователями Классификация управляемых преобразователей
- •Тиристорные преобразователи постоянного тока
- •Импульсные преобразователи постоянного тока
- •Коммутаторы переменного напряжения
- •Непосредственные преобразователи частоты
- •Инверторы напряжения
- •20. Электрические машины постоянного тока Общие сведения. Конструкция
- •Машина постоянного тока независимого возбуждения. Режимы работы и механические характеристики
- •Машина постоянного тока последовательного возбуждения. Режимы работы и механические характеристики
- •21. Электрические машины переменного тока Асинхронная машина переменного тока. Конструкция, режимы работы, механические характеристики
- •Синхронная машина переменного тока. Конструкция, режимы работы, механические характеристики
- •22. Электрические микромашины Электрические микромашины постоянного тока
- •Электрические микромашины переменного тока
- •Шаговые и моментные двигатели
- •Двигатели для микроперемещений
- •Литература
- •628400, Россия, Ханты-Мансийский автономный округ,
Машина постоянного тока последовательного возбуждения. Режимы работы и механические характеристики
Обмотка возбуждения у двигателя постоянного тока последовательного возбуждения включена последовательно с якорем (рис. 20.5).
Рис.20.5. Схема включения двигателя постоянного тока последовательного возбуждения
Уравнение электромеханической характеристики будет иметь такой же вид, что и у двигателя независимого возбуждения:
Здесь RД - суммарное сопротивление цепи двигателя, состоящее из сопротивления якоря и обмотки возбуждения.
Поскольку ток якоря и ток возбуждения один и тот же, то при изменении нагрузки изменяется и магнитный поток возбуждения, следовательно, магнитный поток Ф является функцией тока якоря.
Зависимость магнитного потока возбуждения от тока Ф=f(I) называется кривой намагничивания (рис. 20.6).
Рис.20.6. Зависимость магнитного потока возбуждения от тока Ф=f(I)
Зависимость Ф=f(I) нелинейна, из-за насыщения магнитной цепи, поэтому нельзя получить точного аналитического выражения зависимости Ф=f(I).
Для упрощения анализа можно пренебречь магнитным насыщением и считать, что магнитный поток пропорционален току якоря (линейная зависимость показана на графике пунктиром), то есть:
Ф= f(I).
При этом момент двигателя можно записать в виде:
M = k · Ф · I = k · α ·I2.
Уравнение электромеханической характеристики тогда будет иметь вид:
.
Учитывая,
что
получим
выражение для механической характеристики:
.
Из анализа этих выражений следует, что уравнение электромеханической и механической характеристик представляют собой гиперболические зависимости. В каталогах обычно приводятся естественные механические и электромеханические характеристики.
Уравнение
механической характеристики:
Имеет вид (рис. 20.7)
Рис.20.7. Механическая характеристика двигателя последовательного возбуждения
При уменьшении момента скорость якоря возрастает, при M>0 скорость ω>0, то есть такой двигатель не имеет скорости идеального холостого хода. При возрастании скорости машина не переходит в генераторный режим. Механические характеристики не имеют продолжения во втором квадрате. При снижении момента сопротивления скорость якоря растет и может достигнуть выше допустимой по условиям механической прочности коллектора и бандажей обмотки якоря. При нагрузках ниже (15-20)% номинальных, работа двигателя практически недопустима из-за чрезмерного увеличения скорости якоря (двигатель идёт в разнос). Это ограничивает область применения этих двигателей. Их нельзя использовать для привода механизмов, которые в режиме холостого хода создают малый момент сопротивления на валу.
В каталогах приводятся зависимости ω*=f(I*) и M*=f(I*) угловой скорости и момента от тока якоря, в относительных единицах, общий вид которых представлен на рис.20.8.
Рис.20.8. Зависимость угловой скорости и момента от тока якоря
С увеличением сопротивления реостата скорость двигателя уменьшается при одном и том же моменте сопротивления Мс, уменьшается и жесткость механических характеристик.
На рис.20.9 представлены искусственные реостатные механические характеристики двигателя постоянного тока последовательного возбуждения.
Рис.20.9. Искусственные реостатные механические характеристики