Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
разд.матерТТ / Раз.м.ТТ-14 / Учебное пособие / ТЕХНОТРОНИКА (Учебное пособие).doc
Скачиваний:
337
Добавлен:
13.05.2015
Размер:
3.65 Mб
Скачать

Структурные схемы автоматических регуляторов

Структурные схемы автоматических регуляторов — аналоговых и дискретных — с типовыми алгоритмами регулирования могут быть получены на основе известных в теории автоматического регулирования методов коррекции, когда желаемые динамические характеристики (алгоритмы) достигаются с помощью последова­тельных и параллельных корректирующих цепей (активных и пассивных) и обратных связей. В ряде случаев исполнительные меха­низмы также участвуют в формировании необходимого алгоритма.

На рис.5.1 изображены основные структуры, в соответствии с которыми построено большинство промышленных регуляторов с типовыми алгоритмами. На структурных схемах приняты следую­щие обозначения: 1 — преобразователь входной величины х; 2 — усилительное устройство; 3 — функциональная обратная связь; 4 — исполнительное устройство (механизм), сигнал, с выхода которого управляет объектом.

Преобразователь 1 может осуществлять демпфирование вход­ных сигналов, пропорциональных регулируемым параметрам, преобразование токовых сигналов в сигналы напряжения, суммирование нескольких входных сигналов, масштабирование, активную фильтрацию помех и т. д. В структурах (рис.5.1,а—в) формирование алгоритма осуществляется корректирующей обратной связью 3, охватывающей усилитель 2, и исполнительным устройством 4.

В структурной схеме на рис.5.1,а функциональная обратная связь 3 не охватывает исполнительное устройство 4, поэтому будем называть эту структуру структурой без обратной связи по положению исполнительного устройства. В регулирующих устройствах этого типа устройство 4 выполняется чаще всего в виде интегрирую­щего двигателя с преобразователем угла поворота (датчик положения), а его передаточная функция входит в передаточную функцию закона регулирования.

В отличие от этих регуляторов структуры на рис.5.1,б соответствуют так называемым регуляторам с обратной связью по положению исполнительного устройства. По правилам структурного преобразования схемы на рис.5.1,а, б могут быть сведены к одной из них, однако техническая реализация и свойства структур различны, что и делает необходимым их разделение.

В структурной схеме на рис.5.1,в исполнительное устройство охватывается жесткой обратной связью и носит название позиционера, так как его выходная величина — регулирующее воздействие μ— пропорциональна входному. Закон регулирования определяется блоками 2 и 3.

Рис. 5.1. Типовые структурные схемы промышленных регуляторов

В ряде промышленных регуляторов закон регулирования формируется суммированием отдельных составляющих, реализуемых блоками (2i(1),..., 2i(n)) (рис.5.1,г), каждый из которых может быть образован контуром из усилительного устройства 2 и функциональной обратной связью 3. Часто исполнительное устройство 4 в этих структурах является позиционером. В наиболее простых промышленных регуляторах (например, релейных) структурная схема на рис.5.1,г содержит лишь единственное усилительное звено 2 и отсутствует обратная связь 3.

6. Электронные элементы систем автоматики Электронные компоненты

К наиболее простым по выполняемым функциям элементам электронных средств автоматизации относятся резисторы, электрические конденсаторы, катушки индуктивности, коммутирующие устройства.

Каждый из элементов характеризуется определенными количественными показателями, которые называются функциональными параметрами. Значения функциональных параметров, предусмотренные техническими условиями на данный элемент, называются номинальными или просто номиналами. Допустимые отклонения от номиналов зависят от класса точности деталей. Цена однотипных деталей различного класса точности может отличаться на 50 % и более.

Электронные элементы обеспечивают нормальное функционирование аппаратуры при соблюдении определенных условий их эксплуатации, т. е. определенного рабочего режима. Режим может определять до­пустимые рабочие температуры, токи, напряжения, выделяемую мощность и т. д.

Согласно ГОСТ 16962—71 влияние на элементы внешней среды (температуры, влажности, пыли, радиоактивного облучения) оцениваются двумя показателями: прочностью (способностью элементов выдерживать без существенного изменения их параметров длительные механические нагрузки) и устойчивостью (способностью элементов сохранять параметры в условиях климатических воздействий и после них). Устойчивость того или иного функционального параметра к изменениям температуры оценивается температурным коэффициентом.

Соседние файлы в папке Учебное пособие