Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
методичка по погрешностям.doc
Скачиваний:
303
Добавлен:
13.05.2015
Размер:
1.18 Mб
Скачать

Введение

Настоящее пособие написано на основе курсов «Общая физика» и «Физика твердого тела», читаемых студентам естественно-научных специальностей. В процессе познавательной деятельности человека возникает множест­во задач, для решения которых необходимо располагать количественной информацией о том или ином свойстве объектов материального мира (явления, процесса, вещества, изделия). Основным способом получения такой информации являются измерения.

Результаты любых измерений, как бы тщательно и на каком бы высоком уровне они не выполнялись, неизбежно содержат некоторые погрешности. Абсолютно точных измерений не может быть принципиально. Именно поэтому успешная работа студентов в лабора­ториях, наряду с изучением методов и средств измерений и приобретени­ем навыков измерений, предполагает также их знакомство с методами математической обработки результатов измерений, ана­лиза и оценивания погрешностей.

Данное пособие знакомит студентов с классификацией ошибок измерений и основными методами расчета погрешностей исследуемых величин.

Первая глава содержит описание различного рода погрешностей измерений, причин их возникновения и возможностей устранения и учета. Также в этой главе дано понятие о нормальном распределении случайных величин, которому, являясь случайными величинами, подчиняются и погрешности измерений.

Вторая глава посвящена описанию различных методов оценки погрешностей студенческого лабораторного практикума. Представлены аналитические и графические способы обработки получаемой в ходе работ информации. Указаны правила построения графиков исследуемых зависимостей и снятия с них различного рода показаний.

В приложениях представлен справочный материал, включающий в себя ряд правил, необходимых для обработки результатов измерений. Подробно разобраны примеры нахождения частных производных функций, используемых в методе статистического учета погрешностей измерений, и примеры расчета погрешностей методом наименьших квадратов и методом парных точек.

Пособие рассчитано на студентов как физических, так и нефизических специальностей.

Глава 1. Измерение физических величин. Погрешности измерений

§1. Классификация погрешностей измерений

Цель любого исследования – установление связи между различными физическими явлениями и характеризующими их величинами. Каждая из лабораторных работ физического практикума посвящена изучению определенного физического явления, измерению той или иной величины, характеризующей данное явление или свойства тела, воспроизведению опытов по установлению основных законов природы. Как правило, всякое такое исследование состоит из одного или нескольких измерений.

Под измерением понимают сравнение измеряемой величины с однородной величиной, принятой за единицу измерения. Измерения делят на прямые и косвенные.

При прямых измерениях определяемая величина сравнивается с единицей измерения непосредственно или при помощи измерительного прибора, проградуированного в соответствующих единицах. К таким измерениям относятся измерения длины линейкой, штангенциркулем, микрометром и т.п.; измерения промежутков времени при помощи часов или секундомера; измерения температуры термометром, силы электрического тока амперметром и т.д. При этом значение измеряемой величины отсчитывается по шкале прибора или подсчитывается число и значение используемых мер.

Мера представляет собой средство воспроизведения физической величины определенного размера с заданной точностью.

Измерительные приборы – устройства, предназначенные для измерений и имеющие части, которые воспринимают измеряемую величину и преобразуют ее в показание (весы, штангенциркуль, термометр, амперметр и т.п.).

При косвенных измерениях измеряемая величина определяется (вычисляется) из результатов прямых измерений других величин, которые связаны с измеряемой величиной определенной функциональной зависимостью.

Примерами косвенных измерений могут служить вычисления скорости равномерного (или равноускоренного) движения по измерениям длины пройденного пути и промежутков времени; вычисления плотности тела по измерениям массы и объема тела; вычисления объема цилиндра по измерениям его высоты и диаметра и т. п.

При измерении любой величины мы никогда не получаем ее истинного значения, т.е. результат измерения дает лишь приближенное значение. Это объясняется с одной стороны принципиально ограниченной возможностью точности измерения, с другой – природой объектов исследования. Таким образом, мы получаем результаты с некоторыми погрешностями.

Погрешности измерений – это отклонение результатов измерений от истинных значений, измеряемых величин.

Причины появления ошибок измерений различны, и в зависимости от них погрешности можно классифицировать по ряду оснований. Для наглядности представим следующую схему.

Погрешности

Случайные

Систематические

Промахи

Рассмотрим перечисленные ошибки измерений более подробно.

Случайные погрешности обусловлены рядом неконтролируемых обстоятельств, случайных причин, влияние которых на каждое измерение различно и не может быть заранее учтено.

Типичным примером подобных погрешностей может служить так называемая ошибка параллакса, которая состоит в следующем. Для отсчета делений шкалы прибора необходимо, строго говоря, расположить глаз наблюдателя на перпендикуляре к шкале, проходящем через конец стрелки прибора или через край измеряемого предмета (рис. 1). Однако, это не всегда возможно, и при отсчетах можно получить либо завышенные, либо заниженные значения (рис. 2).

Кслучайным относят исубъективные погрешности – это погрешности, обусловленные индивидуальными свойствами наблюдателя. Например, запаздывание реакции человека на световой сигнал колеблется в пределах от 0,150 до 0,225 секунды, на звуковой – от 0,082 до 0,195 секунды. Субъективная погрешность может быть обнаружена при проведении одинаковых измерений несколькими экспериментаторами.

Развитие измерительной техники привело к появлению разнообразных приборов, отличающихся своей точностью. Точность прибора – это свойство измерительного прибора, характеризующее степень приближения показаний данного измерительного прибора к действительным значениям измеряемой величины. Она связана с физическим явлением, на основе которого построен метод измерения, и с допусками при изготовлении отдельных частей прибора. Точность прибора либо задается классом точности прибора, либо указана в паспорте, прилагаемом к прибору. Погрешность, вносимая прибором при каждом отдельном измерении, связана с точностью прибора. Эта погрешность равна той доле деления шкалы прибора, до которой с уверенностью в правильности результата можно производить отсчет1. Погрешность не может быть больше цены деления измерительного прибора.

Точность и погрешность связаны обратной зависимостью – измерение тем более точно, чем меньше его погрешность. Количественно точность выражается числом, равным обратному значению относительной погрешности. Например, если погрешность измерения составляет 210-5, то точность его 5104.

При обработке результатов измерений студенческого физического практикума, если нет возможности определить класс точности прибора, в качестве систематической погрешности будем брать минимальную цену деления прибора.

Часто стараются произвести измерения с наибольшей достижимой точностью, т.е. сделать погрешность измерения по возможности малой. При этом следует иметь в виду, что чем точнее мы хотим измерить ту или иную величину, тем труднее это сделать, тем больше времени и затрат потребуют эти измерения. Поэтому не следует требовать от измерений большей точности, чем это необходимо.

Погрешности измерительных приборов относят к случайным, т.к., во-первых, случаен выбор прибора экспериментатором, а следовательно и задаваемая точность. И во-вторых, состояние и работа отдельных узлов прибора зависят от внешних факторов. Так, с течением времени на деталях прибора накапливается пыль, что приводит к увеличению трения между ними. Повышенная влажность воздуха приводит к более быстрому стеканию заряда с обкладок конденсатора и уменьшению напряжения на нем. Все это отражается на показаниях приборов.

Погрешности, возникающие вследствие внешних влияний на средства измерения или объекты измерения.

Влияние температуры. Большинство измерительных приборов дает верные показания при температуре +20°С. При отклонении от этой температуры результаты измерений искажаются.

На температуру воздуха оказывают влияние потоки теплого или холодного воздуха, источниками которых являются радиаторы центрального отопления, электрические плитки, окна. Для уменьшения влияния этих причин, например при калориметрических измерениях, необходимо экранировать пламя горелки или плитку, и опыты проводить дальше от окон и радиаторов.

Влияние магнитных полей (магнитного поля Земли и магнитных полей токов) устраняют экранированием. В измерительных приборах экранирование предусмотрено их конструкцией, но оно не является полным.

Влияние вредных вибраций и сотрясений устраняют путем применения различных амортизаторов (пружин, резиновых прокладок, демпферов и т.п.).

Систематические погрешности возникают регулярно или закономерно, т.е. повторяются от измерения к измерению или изменяются по определенному закону. Так установка на ноль риски микрометра обеспечит одну и ту же ошибку в каждом измерении. А изменение сопротивления проводника из-за его нагревания при пропускании по нему электрического тока приведет к увеличению сопротивления проводника и, следовательно, уменьшению тока в цепи. Значит и показания амперметра будут отличаться от расчетных. Причем, чем больше сопротивление и меньше ток, тем больше это расхождение.

Систематические погрешности связаны с ограниченной точностью изготовления прибора (погрешностью прибора), неправильным выбором метода измерений, неправильной установкой прибора. Они также появляются, если пренебречь действием некоторых внешних факторов.

Погрешности метода измеренияэто погрешности, возникающие вследствие несовершенства применяемого метода измерения или из-за наличия допущений и упрощений в применяемых эмпирических формулах. Так, при измерении диаметра шарика измерительной линейкой допускается большая погрешность, чем при использовании штангенциркуля (даже без учета десятых долей миллиметра). Однако, если при помощи штангенциркуля измерять расстояние между двумя точками на бумаге, то на такое измерение уйдет много времени, а точность его будет вряд ли больше, чем при измерении линейкой, хотя сам по себе штангенциркуль способен обеспечить большую точность.

Инструментальные погрешности – это погрешности, возникающие при изготовлении меры или измерительного прибора.

Все меры и измерительные приборы делятся на образцовые и рабочие. Образцовые меры и измерительные приборы служат для воспроизведения и хранения единиц измерения и для проверки и градуировки других мер и измерительных приборов, в частности рабочих, которые используют для практических измерений. Образцовые меры и измерительные приборы дают значения, называемые действительными, рабочие – номинальными.

Погрешностью меры или измерительного прибора называют алгебраическую разность между их номинальным и действительным значениями.

Инструментальную погрешность, взятую с обратным знаком, называют поправкой. Поправки обычно указывают в техническом паспорте прибора. Если средства измерения дают заниженные показания, то поправка, указанная в паспорте, имеет знак «плюс», при завышенных показаниях – «минус».

При обнаружении погрешности от неисправности измерительного прибора следует внести поправку к его показанию. Например, если из-за погнутости стрелки магнитоэлектрического амперметра при отсутствии тока она устанавливается не на нулевой отметке шкалы, а на отметке 0,1 А, т.е. показания завышены, необходимо все показания амперметра уменьшать на 0,1 А; если термометр при измерении температуры тающего снега показывает +1°С, то для такого термометра необходимо брать поправку –1°С.

Погрешности, возникающие в результате неправильной установки и поверки прибора. Измерительные приборы требуют предварительной поверки и определенной установки. Невыполнение этих требований приводит к неверным показаниям. Например, амперметры и вольтметры должны быть установлены в зависимости от указания на приборе (вертикально или горизонтально).

Систематические инструментальные погрешности возникают, если шкала линейки нанесена неточно (неравномерно), положение нуля термометра не соответствует нулевой температуре; капилляр манометра в разных участках имеет разные сечения; при отсутствии электрического тока через амперметр стрелка прибора не устанавливается на нуле и т.д.

Округляя численную величину до какого-либо приближенного значения, например, полагая  = 3;  = 3,1;  = 3,14;  = 3,142;  = 3,1416 и т.д. вместо  = 3,14159265…, мы допускаем систематическую погрешность.

Грубые погрешности (или промахи) обусловлены неисправностью средств измерений, неправильным отсчитыванием показаний, резкими изменениями условий измерений и т.д. Они приводят к значениям измеряемой величины, резко отличающимся от остальных значений.

При обработке результатов измерений промахи обычно отбрасывают; влияние систематических погрешностей стремятся уменьшить внесением поправок или умножением показаний приборов на поправочные коэффициенты; оценки случайных погрешностей осуществляют методами математической статистики.