
- •1. Важнейшим научным доказательством единства всего живого послужила клеточная теория т. Шванна и м. Шлейдена (1839).
- •2. Формы клеточной и доклеточной организации жизни на земле. Сходство и различие про и эукариот. Вирусы, вироиды. Их характеристика и медицинское значение.
- •3. Основные химические компоненты клетки, роль макро- и микроэлементов в жизнедеятельности организма.
- •4. Клеточные органеллы, их структура и роль.
- •5. Хромосомы, их форма, строение, химический состав, биологическая роль. Строение и функции интерфазных и метафазных хромосом.
- •6. Кариотип человека. Принципы составления идиограмм.
- •7. Политенные хромосомы, механизм формирования, биологическое значение.
- •8. Белки, их химический состав, уровни структурной организации. Биологическая роль белков. Понятие о гистоновых и негистоновых белках. Прионовые белки и их медицинское значение.
- •9.Нуклеиновые кислоты. Днк, её состав и структурная организация,
- •10. Рнк. Типы рнк, их структура и химический состав, биологическая роль. Сплайсинг (процессинг) рнк, альтернативный сплайсинг и-рнк структурных генов эукариот. Понятие о рибозимах.
- •11.Авторедупликация днк: суть явления, роль Ферментов, структурная
- •12.Транскрипция: суть явления, особенности в клетках про- и эукариот. Биологическое значение.
- •13.Трансляция: суть явления, необходимые компоненты и условия, особенности строения т-рнк, минорные основания и их роль. Ферменты транскрипции. Процессинг белков.
- •15. Схема передачи сигнала в клетку, первичные и вторичные
- •16.Потоки генетической информации в клетке. Явление обратной транскрипции. Биологическая роль.
- •17.Формы клеточной репродукции соматических клеток: митоз, амитоз, эндомитоз, политения. Суть явления и биологическое значение. Проблемы клеточной пролиферации.
- •18.Понятие о жизненном цикле клетки. Характеристика периодов.
- •19.Мейоз. Фазы мейоза. Особенности профазы 1. Биологическое значение. Динамика хромосом (n) и днк (с). Схема нарушения расхождения хромосом и формирование патологических кариотипов.
- •20.Митоз и мейоз – сравнительно-цитологическая характеристика
- •21.Гаметогенез. Сравнительная характеристика периодов ово- и сперматогенеза: размножения, роста, созревания и формирования.
- •22.Гаметы – яйцеклетки и сперматозоиды. Морфологическая, физиологическая и генетическая характеристики. Суть полового процесса, биологическое значение. Особенности полового процесса у человека.
- •23.Понятие об онто- и филогенезе. Этапы онтогенеза. Периоды эмбрионального развития.
- •24.Типы яйцеклеток. Зависимость между типами яйцеклеток и характером дробления.
- •25.Понятие о гаструле. Типы гаструляции. Производные экто- и энтодермы.
- •26.Способы закладки мезодермы и её производные.
- •27. Механизмы клеточной дифференцировки в эмбриогенезе: ооплазматическая сегрегация, эмбриональная индукция, генная активность. Понятие о гомеозисных генах.
- •28. Критические периоды эмбриогенеза. Тератогенные факторы.
5. Хромосомы, их форма, строение, химический состав, биологическая роль. Строение и функции интерфазных и метафазных хромосом.
Хромосо́мы— нуклеопротеидныеструктуры вядреэукариотическойклетки, в которых сосредоточена большая частьнаследственной информациии которые предназначены для её хранения, реализации и передачи. Хромосома может быть одинарной (из одной хроматиды) и двойной (из двух хроматид). Хроматида – это нуклеопротеидная нить, половинка двойной хромосомы.
Участки хромосомы
Рис.1.Строениенормальнойхромосомы. А — внешний вид; Б — внутреннее строение:
1—первичная перетяжка; 2 — вторичная перетяжка;
3 —спутник; 4 — центромера.
Центромера (первичная перетяжка) это место соединения двух хроматид; к центромере присоединяются нити веретена деления. По сторонам от центромеры лежат плечи хромосомы. В зависимости от места расположения центромеры хромосомы делят на равноплечие (метацентрические), неравноплечие (субметацентрические), палочковидные (акроцентрические) – имеется только одно плечо.
Вторичная перетяжка – ядрышковый организатор, содержит гены рРНК, имеется у одной – двух хромосом в геноме.
Теломеры – концевые участки хромосом, содержащие до 10 тысяч пар нуклеотидов с повторяющейся последовательностью ТТАГГГ. Теломеры не содержат генов, они защищают концы хромосом он действия нуклеаз – ферментов, разрушающих ДНК обеспечивают прикрепление концов хромосом изнутри к ядерной оболочке защищают гены от концевой недорепликации.
Форма хромосомы.
В зависимости от расположения первичной перетяжки хромосомы подразделяют на:
- метацентрические (оба плеча равной или почти равной длины),
- субметацентрические (плечи неравной длины) и
- акроцентрические (центромера смещена на конец хромосомы).
Химический состав хромосом
Хромосомы - нуклеопротеидные образования, состоящие из ДНК и белка. Кроме того, в хромосомах присутствует некоторое количество РНК, образующейся при транскрипции, и ионы Са+ и Mg+.Каждая хроматида, а в промежутке времени анафаза- S -период интерфазы и хромосома, содержит одну молекулу ДНК, которая определяет все функции хромосомы, связанные с хранением наследственной информации, её передачей и реализацией.Молекула ДНК в хромосомах тесно связана с двумя классами белков- гистонами (основные белки) и негистонами (кислые белки).Гистоны - это небольшие по величине белки с высоким содержанием заряженных аминокислот (лизина и аргинина).Суммарный положительный заряд позволяет гистонам связываться с ДНК независимо от нуклеотидного состава. Им принадлежит в основном структурная функция. Это очень стабильные белки, молекулы которых могут сохраняться в течение всей жизни клетки.В эукариотической клетке присутствуют 5 типов гистонов, которые распределяются на две основные группы: первая группа (их обозначают как Н2А, Н2В, НЗ, Н4), отвечает за формирование специфических дезоксирибонуклеопротеидных комплексов - нуклеосом.Вторая группа гистонов (HI) располагается между нуклеосомами и фиксирует укладку нуклеосомной цепи в более высокий уровень структурной организации (супернуклеосомную нить).Среди гистоновых белков, кроме структурных, встречаются такие, которые способны ограничивать доступность ДНК для ДНК - связывающих регуляторных белков и тем самым участвовать в регуляции активности генов.Негистоновые белки весьма разнообразны. Число их фракций превышает 100. Они присутствуют в меньших количествах в хромосомах в сравнении с гистонами и выполняют в основном регуляторную функцию. Участвуют в регуляции транскрипционной активности генов, в обеспечении редупликации и репарации ДНК.Большинство негистоновых белков хроматина присутствуют в клетках в небольшом количестве (минорные) - это регуляторные белки, узнающие специфические последовательности ДНК и связывающиеся с ними. Они вовлечены во многие генетические процессы, но известно о них пока что немного. Количественно преобладают негистоновые белки (мажорные), высокоподвижные, относительно малого размера, с большим электрическим зарядом - они всегда соединяются с нуклеосомами, содержащими активные гены. Кроме того, в группу негистоновых белков входит много ферментов.
Биологическая роль:
- хромосомы являются носителями наследственной информации
- хранит, реализует и передает наследственную информацию.
Строение и функции интерфазных и метафазных хромосом.
Рис. 63. Схема строения интерфазной (вверху) и метафазной хромосом.
Метафазная:
Вметафазеядрышки неконденсированы и не окрашиваются.
Районы ядрышкового организатора примыкают к находящимся на конце короткого плеча хромосомы конденсированным участкам хроматина - спутникам.
Спутникине содержат генов и являются полиморфными участками
В небольшой части клеток удается выявить другие деконденсированные в метафазе участки, так называемыеломкие участки, где могут происходить "полные" разрывы хромосомы.
Клиническое значение имеют нарушения в единственном подобном участке, расположенном на конце длинного плеча Х-хромосомы. Такие нарушения вызываютсиндром ломкой Х-хромосомы.
Неоднородность метафазных хромосом, как уже упоминалось, можно увидеть даже при световой микроскопии.
Интерфазная:
По окончании синтеза ДНК каждая хромосома оказывается удвоенной - состоящей из двух сестринских хроматид.
В генетическом отношении хроматиды полностью идентичны друг другу, так как их ДНК состоит из одной материнской и второй вновь синтезированной цепи.
Сестринские хроматиды тесно сближены и соединены в том районе хромосомы, который обеспечивает ее движение при делении клетки. Он называетсяцентромерным районом хромосомы.
После полного удвоения хромосом наступаетпостсинтетический период (G2). В это время клетка готовится к делению: синтезируются белкимикротрубочек, которые во времямитозабудут формироватьверетеноделения, запасается энергия. Продолжительность G2-периода меньше, чем у S- и Gi-периодов, и обычно составляет 3-6 ч.
Если содержание ДНК в гаплоидном наборе хромосом обозначить через С, то сразу после деления в диплоидной клетке имеется 2С-содержание ДНК, а по окончании синтетического периода в диплоидном (2n) наборе хромосом содержится 4С-количество ДНК.