- •Thinking in C++ 2nd edition Volume 2: Standard Libraries & Advanced Topics
- •Preface
- •What’s new in the second edition
- •What’s in Volume 2 of this book
- •How to get Volume 2
- •Prerequisites
- •Learning C++
- •Goals
- •Chapters
- •Exercises
- •Exercise solutions
- •Source code
- •Language standards
- •Language support
- •The book’s CD ROM
- •Seminars, CD Roms & consulting
- •Errors
- •Acknowledgements
- •Library overview
- •1: Strings
- •What’s in a string
- •Creating and initializing C++ strings
- •Initialization limitations
- •Operating on strings
- •Appending, inserting and concatenating strings
- •Replacing string characters
- •Concatenation using non-member overloaded operators
- •Searching in strings
- •Finding in reverse
- •Finding first/last of a set
- •Removing characters from strings
- •Stripping HTML tags
- •Comparing strings
- •Using iterators
- •Iterating in reverse
- •Strings and character traits
- •A string application
- •Summary
- •Exercises
- •2: Iostreams
- •Why iostreams?
- •True wrapping
- •Iostreams to the rescue
- •Sneak preview of operator overloading
- •Inserters and extractors
- •Manipulators
- •Common usage
- •Line-oriented input
- •Overloaded versions of get( )
- •Reading raw bytes
- •Error handling
- •File iostreams
- •Open modes
- •Iostream buffering
- •Seeking in iostreams
- •Creating read/write files
- •User-allocated storage
- •Output strstreams
- •Automatic storage allocation
- •Proving movement
- •A better way
- •Output stream formatting
- •Internal formatting data
- •Format fields
- •Width, fill and precision
- •An exhaustive example
- •Formatting manipulators
- •Manipulators with arguments
- •Creating manipulators
- •Effectors
- •Iostream examples
- •Code generation
- •Maintaining class library source
- •Detecting compiler errors
- •A simple datalogger
- •Generating test data
- •Verifying & viewing the data
- •Counting editor
- •Breaking up big files
- •Summary
- •Exercises
- •3: Templates in depth
- •Nontype template arguments
- •Typedefing a typename
- •Using typename instead of class
- •Function templates
- •A string conversion system
- •A memory allocation system
- •Type induction in function templates
- •Taking the address of a generated function template
- •Local classes in templates
- •Applying a function to an STL sequence
- •Template-templates
- •Member function templates
- •Why virtual member template functions are disallowed
- •Nested template classes
- •Template specializations
- •A practical example
- •Pointer specialization
- •Partial ordering of function templates
- •Design & efficiency
- •Preventing template bloat
- •Explicit instantiation
- •Explicit specification of template functions
- •Controlling template instantiation
- •Template programming idioms
- •Summary
- •Containers and iterators
- •STL reference documentation
- •The Standard Template Library
- •The basic concepts
- •Containers of strings
- •Inheriting from STL containers
- •A plethora of iterators
- •Iterators in reversible containers
- •Iterator categories
- •Input: read-only, one pass
- •Output: write-only, one pass
- •Forward: multiple read/write
- •Bidirectional: operator--
- •Random-access: like a pointer
- •Is this really important?
- •Predefined iterators
- •IO stream iterators
- •Manipulating raw storage
- •Basic sequences: vector, list & deque
- •Basic sequence operations
- •vector
- •Cost of overflowing allocated storage
- •Inserting and erasing elements
- •deque
- •Converting between sequences
- •Cost of overflowing allocated storage
- •Checked random-access
- •list
- •Special list operations
- •list vs. set
- •Swapping all basic sequences
- •Robustness of lists
- •Performance comparison
- •A completely reusable tokenizer
- •stack
- •queue
- •Priority queues
- •Holding bits
- •bitset<n>
- •vector<bool>
- •Associative containers
- •Generators and fillers for associative containers
- •The magic of maps
- •A command-line argument tool
- •Multimaps and duplicate keys
- •Multisets
- •Combining STL containers
- •Creating your own containers
- •Summary
- •Exercises
- •5: STL Algorithms
- •Function objects
- •Classification of function objects
- •Automatic creation of function objects
- •Binders
- •Function pointer adapters
- •SGI extensions
- •A catalog of STL algorithms
- •Support tools for example creation
- •Filling & generating
- •Example
- •Counting
- •Example
- •Manipulating sequences
- •Example
- •Searching & replacing
- •Example
- •Comparing ranges
- •Example
- •Removing elements
- •Example
- •Sorting and operations on sorted ranges
- •Sorting
- •Example
- •Locating elements in sorted ranges
- •Example
- •Merging sorted ranges
- •Example
- •Set operations on sorted ranges
- •Example
- •Heap operations
- •Applying an operation to each element in a range
- •Examples
- •Numeric algorithms
- •Example
- •General utilities
- •Creating your own STL-style algorithms
- •Summary
- •Exercises
- •Perspective
- •Duplicate subobjects
- •Ambiguous upcasting
- •virtual base classes
- •The "most derived" class and virtual base initialization
- •"Tying off" virtual bases with a default constructor
- •Overhead
- •Upcasting
- •Persistence
- •MI-based persistence
- •Improved persistence
- •Avoiding MI
- •Mixin types
- •Repairing an interface
- •Summary
- •Exercises
- •7: Exception handling
- •Error handling in C
- •Throwing an exception
- •Catching an exception
- •The try block
- •Exception handlers
- •Termination vs. resumption
- •The exception specification
- •Better exception specifications?
- •Catching any exception
- •Rethrowing an exception
- •Uncaught exceptions
- •Function-level try blocks
- •Cleaning up
- •Constructors
- •Making everything an object
- •Exception matching
- •Standard exceptions
- •Programming with exceptions
- •When to avoid exceptions
- •Not for asynchronous events
- •Not for ordinary error conditions
- •Not for flow-of-control
- •You’re not forced to use exceptions
- •New exceptions, old code
- •Typical uses of exceptions
- •Always use exception specifications
- •Start with standard exceptions
- •Nest your own exceptions
- •Use exception hierarchies
- •Multiple inheritance
- •Catch by reference, not by value
- •Throw exceptions in constructors
- •Don’t cause exceptions in destructors
- •Avoid naked pointers
- •Overhead
- •Summary
- •Exercises
- •8: Run-time type identification
- •The “Shape” example
- •What is RTTI?
- •Two syntaxes for RTTI
- •Syntax specifics
- •Producing the proper type name
- •Nonpolymorphic types
- •Casting to intermediate levels
- •void pointers
- •Using RTTI with templates
- •References
- •Exceptions
- •Multiple inheritance
- •Sensible uses for RTTI
- •Revisiting the trash recycler
- •Mechanism & overhead of RTTI
- •Creating your own RTTI
- •Explicit cast syntax
- •Summary
- •Exercises
- •9: Building stable systems
- •Shared objects & reference counting
- •Reference-counted class hierarchies
- •Finding memory leaks
- •An extended canonical form
- •Exercises
- •10: Design patterns
- •The pattern concept
- •The singleton
- •Variations on singleton
- •Classifying patterns
- •Features, idioms, patterns
- •Basic complexity hiding
- •Factories: encapsulating object creation
- •Polymorphic factories
- •Abstract factories
- •Virtual constructors
- •Destructor operation
- •Callbacks
- •Observer
- •The “interface” idiom
- •The “inner class” idiom
- •The observer example
- •Multiple dispatching
- •Visitor, a type of multiple dispatching
- •Efficiency
- •Flyweight
- •The composite
- •Evolving a design: the trash recycler
- •Improving the design
- •“Make more objects”
- •A pattern for prototyping creation
- •Trash subclasses
- •Parsing Trash from an external file
- •Recycling with prototyping
- •Abstracting usage
- •Applying double dispatching
- •Implementing the double dispatch
- •Applying the visitor pattern
- •More coupling?
- •RTTI considered harmful?
- •Summary
- •Exercises
- •11: Tools & topics
- •The code extractor
- •Debugging
- •Trace macros
- •Trace file
- •Abstract base class for debugging
- •Tracking new/delete & malloc/free
- •CGI programming in C++
- •Encoding data for CGI
- •The CGI parser
- •Testing the CGI parser
- •Using POST
- •Handling mailing lists
- •Maintaining your list
- •Mailing to your list
- •A general information-extraction CGI program
- •Parsing the data files
- •Summary
- •Exercises
- •General C++
- •My own list of books
- •Depth & dark corners
- •Design Patterns
- •Index
The find_end( ) test discovers the last occurrence of the entire sequence { 11, 11, 11 }. To show that it has in fact found the last occurrence, the rest of v starting from it is printed.
The first search_n( ) test looks for 3 copies of the value 7, which it finds and prints. When using the second version of search_n( ), the predicate is ordinarily meant to be used to determine equivalence between two elements, but I’ve taken some liberties and used a function object that multiplies the value in the sequence by (in this case) 15 and checks to see if it’s greater than 100. That is, the search_n( ) test above says “find me 6 consecutive values which, when multiplied by 15, each produce a number greater than 100.” Not exactly what you normally expect to do, but it might give you some ideas the next time you have an odd searching problem.
min_element( ) and max_element( ) are straightforward; the only thing that’s a bit odd is that it looks like the function is being dereferenced with a ‘*’. Actually, the returned iterator is being dereferenced to produce the value for printing.
To test replacements, replace_copy( ) is used first (so it doesn’t modify the original vector) to replace all values of 8 with the value 47. Notice the use of back_inserter( ) with the empty vector v2. To demonstrate replace_if( ), a function object is created using the standard template greater_equal along with bind2nd to replace all the values that are greater than or equal to 7 with the value -1.
Comparing ranges
These algorithms provide ways to compare two ranges. At first glance, the operations they perform seem very close to the search( ) function above. However, search( ) tells you where the second sequence appears within the first, while equal( ) and lexicographical_compare( ) simply tell you whether or not two sequences are exactly identical (using different comparison algorithms). On the other hand, mismatch( ) does tell you where the two sequences go out of sync, but those sequences must be exactly the same length.
bool equal(InputIterator first1, InputIterator last1, InputIterator first2); bool equal(InputIterator first1, InputIterator last1, InputIterator first2
BinaryPredicate binary_pred);
In both of these functions, the first range is the typical one, [first1, last1). The second range starts at first2, but there is no “last2” because its length is determined by the length of the first range. The equal( ) function returns true if both ranges are exactly the same (the same elements in the same order); in the first case, the operator== is used to perform the comparison and in the second case binary_pred is used to decide if two elements are the same.
bool lexicographical_compare(InputIterator1 first1, InputIterator1 last1 InputIterator2 first2, InputIterator2 last2);
bool lexicographical_compare(InputIterator1 first1, InputIterator1 last1 InputIterator2 first2, InputIterator2 last2, BinaryPredicate binary_pred);
Chapter 15: Multiple Inheritance
305
These two functions determine if the first range is “lexicographically less” than the second (they return true if range 1 is less than range 2, and false otherwise. Lexicographical equality, or “dictionary” comparison, means that the comparison is done the same way we establish the order of strings in a dictionary, one element at a time. The first elements determine the result if these elements are different, but if they’re equal the algorithm moves on to the next elements and looks at those, and so on. until it finds a mismatch. At that point it looks at the elements, and if the element from range 1 is less than the element from range two, then lexicographical_compare( ) returns true, otherwise it returns false. If it gets all the way through one range or the other (the ranges may be different lengths for this algorithm) without finding an inequality, then range 1 is not less than range 2 so the function returns false.
If the two ranges are different lengths, a missing element in one range acts as one that “precedes” an element that exists in the other range. So {‘a’, ‘b’} lexicographically precedes {‘a’, ‘b’, ‘a’ }.
In the first version of the function, operator< is used to perform the comparisons, and in the second version binary_pred is used.
pair<InputIterator1, InputIterator2> mismatch(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2);
pair<InputIterator1, InputIterator2> mismatch(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, BinaryPredicate binary_pred);
As in equal( ), the length of both ranges is exactly the same, so only the first iterator in the second range is necessary, and the length of the first range is used as the length of the second range. Whereas equal( ) just tells you whether or not the two ranges are the same, mismatch( ) tells you where they begin to differ. To accomplish this, you must be told (1) the element in the first range where the mismatch occurred and (2) the element in the second range where the mismatch occurred. These two iterators are packaged together into a pair object and returned. If no mismatch occurs, the return value is last1 combined with the past- the-end iterator of the second range.
As in equal( ), the first function tests for equality using operator== while the second one uses binary_pred.
Example
Because the standard C++ string class is built like a container (it has begin( ) and end( ) member functions which produce objects of type string::iterator), it can be used to conveniently create ranges of characters to test with the STL comparison algorithms. However, you should note that string has a fairly complete set of native operations, so you should look at the string class before using the STL algorithms to perform operations.
//: C05:Comparison.cpp
// The STL range comparison algorithms #include "PrintSequence.h"
#include <vector> #include <algorithm>
Chapter 15: Multiple Inheritance
306
#include <functional> #include <string> using namespace std;
int main() {
//strings provide a convenient way to create
//ranges of characters, but you should
//normally look for native string operations: string s1("This is a test");
string s2("This is a Test"); cout << "s1: " << s1 << endl
<<"s2: " << s2 << endl; cout << "compare s1 & s1: "
<<equal(s1.begin(), s1.end(), s1.begin())
<<endl;
cout << "compare s1 & s2: "
<<equal(s1.begin(), s1.end(), s2.begin())
<<endl;
cout << "lexicographical_compare s1 & s1: " << lexicographical_compare(s1.begin(), s1.end(),
s1.begin(), s1.end()) << endl;
cout << "lexicographical_compare s1 & s2: " << lexicographical_compare(s1.begin(), s1.end(),
s2.begin(), s2.end()) << endl;
cout << "lexicographical_compare s2 & s1: " << lexicographical_compare(s2.begin(), s2.end(),
s1.begin(), s1.end()) << endl;
cout << "lexicographical_compare shortened " "s1 & full-length s2: " << endl;
string s3(s1); while(s3.length() != 0) {
bool result = lexicographical_compare( s3.begin(), s3.end(), s2.begin(),s2.end());
cout << s3 << endl << s2 << ", result = " << result << endl;
if(result == true) break;
s3 = s3.substr(0, s3.length() - 1);
}
pair<string::iterator, string::iterator> p = mismatch(s1.begin(), s1.end(), s2.begin());
print(p.first, s1.end(), "p.first", ""); print(p.second, s2.end(), "p.second","");
} ///:~
Chapter 15: Multiple Inheritance
307
