Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

P.K.Townsend - Black Holes

.pdf
Скачиваний:
20
Добавлен:
07.05.2013
Размер:
769.18 Кб
Скачать

arXiv:gr-qc/9707012 v1 4 Jul 97

Black Holes

.

.

Lecture notes by

Dr. P.K. Townsend

DAMTP, University of Cambridge,

Silver St., Cambridge, U.K.

Acknowledgements

These notes were written to accompany a course taught in Part III of the Cambridge University Mathematical Tripos. There are occasional references to questions on four 'example sheets', which can be found in the Appendix. The writing of these course notes has greatly bene tted from discussions with Gary Gibbons and Stephen Hawking. The organisation of the course was based on unpublished notes of Gary Gibbons and owes much to the 1972 Les Houches and 1986 Cargese lecture notes of Brandon Carter, and to the 1972 lecture notes of Stephen Hawking. Finally, I am very grateful to Tim Perkins for typing the notes in LATEX, producing the diagrams, and putting it all together.

2

Contents

1 Gravitational Collapse

6

1.1The Chandrasekhar Limit . . . . . . . . . . . . . . . . . . . . 6

1.2Neutron Stars . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Schwarzschild Black Hole

11

2.1Test particles: geodesics and a ne parameterization . . . . . 11

2.2Symmetries and Killing Vectors . . . . . . . . . . . . . . . . . 13

2.3Spherically-Symmetric Pressure Free Collapse . . . . . . . . . 15

2.3.1Black Holes and White Holes . . . . . . . . . . . . . . 18

2.3.2Kruskal-Szekeres Coordinates . . . . . . . . . . . . . . 20

2.3.3 Eternal Black Holes . . . . . . . . . . . . . . . . . . . 24

2.3.4Time translation in the Kruskal Manifold . . . . . . . 26

2.3.5Null Hypersurfaces . . . . . . . . . . . . . . . . . . . . 27

2.3.6

Killing Horizons . . . . . . . . . . . . . . . . . . . . .

29

2.3.7

Rindler spacetime . . . . . . . . . . . . . . . . . . . .

33

2.3.8

Surface Gravity and Hawking Temperature . . . . . .

37

2.3.9Tolman Law - Unruh Temperature . . . . . . . . . . . 39

2.4 Carter-Penrose Diagrams . . . . . . . . . . . . . . . . . . . . 40

2.4.1 Conformal Compacti cation . . . . . . . . . . . . . . . 40

2.5Asymptopia . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.6The Event Horizon . . . . . . . . . . . . . . . . . . . . . . . . 49

2.7Black Holes vs. Naked Singularities . . . . . . . . . . . . . . . 53

3 Charged Black Holes

56

3.1 Reissner-Nordstr•om . . . . . . . . . . . . . . . . . . . . . . .

56

3.2Pressure-Free Collapse to RN . . . . . . . . . . . . . . . . . . 65

3.3Cauchy Horizons . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4 Isotropic Coordinates for RN . . . . . . . . . . . . . . . . . . 70

3.4.1Nature of Internal 1 in Extreme RN . . . . . . . . . . 74

3

3.4.2 Multi Black Hole Solutions . . . . . . . . . . . . . . .

75

4 Rotating Black Holes

76

4.1 Uniqueness Theorems . . . . . . . . . . . . . . . . . . . . . .

76

4.1.1Spacetime Symmetries . . . . . . . . . . . . . . . . . . 76

4.2 The Kerr Solution . . . . . . . . . . . . . . . . . . . . . . . .

78

4.2.1 Angular Velocity of the Horizon . . . . . . . . . . . .

84

4.3The Ergosphere . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4The Penrose Process . . . . . . . . . . . . . . . . . . . . . . . 88

4.4.1Limits to Energy Extraction . . . . . . . . . . . . . . . 89

4.4.2Super-radiance . . . . . . . . . . . . . . . . . . . . . . 90

5 Energy and Angular Momentum

93

5.1

Covariant Formulation of Charge Integral . . . . . . . . . . .

93

5.2

ADM energy . . . . . . . . . . . . . . . . . . . . . . . . . . .

94

 

5.2.1 Alternative Formula for ADM Energy . . . . . . . . .

96

5.3

Komar Integrals . . . . . . . . . . . . . . . . . . . . . . . . .

97

5.3.1 Angular Momentum in Axisymmetric Spacetimes . . . 98

5.4Energy Conditions . . . . . . . . . . . . . . . . . . . . . . . . 99

6 Black Hole Mechanics

101

6.1Geodesic Congruences . . . . . . . . . . . . . . . . . . . . . . 101 6.1.1 Expansion and Shear . . . . . . . . . . . . . . . . . . . 106

6.2The Laws of Black Hole Mechanics . . . . . . . . . . . . . . . 109

6.2.1 Zeroth law . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2.2Smarr's Formula . . . . . . . . . . . . . . . . . . . . . 110

6.2.3First Law . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2.4 The Second Law (Hawking's Area Theorem)

. . . . . 113

7 Hawking Radiation

119

7.1Quantization of the Free Scalar Field . . . . . . . . . . . . . . 119

7.2 Particle Production in Non-Stationary Spacetimes . . . . . . 123

7.3Hawking Radiation . . . . . . . . . . . . . . . . . . . . . . . . 125

7.4 Black Holes and Thermodynamics . . . . . . . . . . . . . . . 129

7.4.1The Information Problem . . . . . . . . . . . . . . . . 130

A Example Sheets

 

132

A.1

Example Sheet 1

. . . . . . . . . . . . . . . . . . . . . . . . . 132

A.2

Example Sheet 2

. . . . . . . . . . . . . . . . . . . . . . . . .

135

A.3

Example Sheet 3

. . . . . . . . . . . . . . . . . . . . . . . . .

138

4

A.4 Example Sheet 4 . . . . . . . . . . . . . . . . . . . . . . . . . 141

5

Chapter 1

Gravitational Collapse

1.1The Chandrasekhar Limit

A Star is a self-gravitating ball of hydrogen atoms supported by thermal pressure P nkT where n is the number density of atoms. In equilibrium,

E = Egrav + Ekin

(1.1)

is a minimum. For a star of mass M and radius R

 

Egrav

 

 

GM2

(1.2)

R

 

Ekin

 

nR3 hEi

(1.3)

where hEi is average kinetic energy of atoms. Eventually, fusion at the core must stop, after which the star cools and contracts. Consider the possible nal state of a star at T = 0. The pressure P does not go to zero as T ! 0 because of degeneracy pressure. Since me mp the electrons become degenerate rst, at a number density of one electron in a cube of side Compton wavelength.

e

hpei

 

h

 

i

 

 

n 1=3

~

;

 

p

 

= average electron momentum

(1.4)

 

 

 

Can electron degeneracy pressure support a star from collapse at T = 0?

Assume that electrons are non-relativistic. Then

 

h

E

i

hpei2

:

(1.5)

me

 

 

 

6

So, since n = ne,

Ekin

 

~2R2re2=3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

:

 

 

 

 

 

 

 

(1.6)

 

 

 

 

me

 

 

 

 

 

 

 

 

Since me mp, M neR3me, so

ne

M

and

 

 

mpR3

 

~2

 

M

 

5=3 1

 

 

 

 

 

Ekin

 

 

 

 

 

 

 

 

 

:

 

 

 

(1.7)

me

mp

 

 

R2

 

 

 

 

|

 

 

 

{z

 

 

 

 

}

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

constant for

 

 

 

 

 

 

 

 

 

 

 

xed M

 

 

 

 

 

 

 

 

Thus

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E

 

 

 

;

 

 

; independent of R:

(1.8)

R

R2

 

 

E .

~2M 1=3

Rmin Gmem5p=3

.Rmin

.

.

.

.

R

 

The collapse of the star is therefore prevented. It becomes a White Dwarf or a cold, dead star supported by electron degeneracy pressure.

At equilibrium

 

 

M

 

meG

 

 

 

2=3

 

3

 

 

 

2

 

 

ne

 

 

 

 

Mmp

 

:

(1.9)

mpRmin3

~2

 

 

 

 

 

 

 

 

But the validity of non-relativistic approximation requires that hpei mec, i.e.

 

hpei

=

~ne1=3

 

c

(1.10)

 

 

me

 

me

 

 

or ne

mec

2

:

(1.11)

~

7

For a White Dwarf this implies

 

 

 

 

 

 

 

 

3=2

 

 

meG

 

2 2=3

 

mec

 

~2

 

Mmp

 

 

~

(1.12)

 

 

 

mp2

G

 

 

or M

1

 

~c

 

:

(1.13)

 

 

 

 

For su ciently large M the electrons would have to be relativistic, in

which case we must use

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

hEi = hpeic = ~cne1=3

 

 

 

 

 

 

 

(1.14)

) Ekin

 

neR3 hEi ~cR3ne4=3

 

 

 

 

 

 

(1.15)

 

 

 

 

~cR3

 

M

 

4=3

~c

 

M

 

4=3

1

 

(1.16)

 

 

 

 

 

 

 

 

 

 

 

 

 

mpR3

 

mp

 

R

So now,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E

 

+

 

 

:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1.17)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Equilibrium is possible only for

 

 

 

 

 

 

 

 

 

 

 

 

 

)

 

 

 

mp2

G

3=2

 

 

 

 

 

 

 

 

=

 

 

 

M

 

 

1

 

~c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

:

 

 

 

 

 

 

 

(1.18)

For smaller M, R must increase until electrons become non-relativistic, in which case the star is supported by electron degeneracy pressure, as we just saw. For larger M, R must continue to decrease, so electron degeneracy pressure cannot support the star. There is therefore a critical mass MC

 

mp2

G

)

 

memp

Gc

 

1=2

 

1

 

~c

3=2

 

1

~3

 

 

MC

 

 

 

 

RC

 

 

 

 

(1.19)

above which a star cannot end as a White Dwarf. This is the Chandrasekhar limit. Detailed calculation gives MC ' 1:4M .

1.2Neutron Stars

The electron energies available in a White Dwarf are of the order of the Fermi

energy. Necessarily E < m c2 since the electrons are otherwise relativistic

F e

and cannot support the star. A White Dwarf is therefore stable against inverse -decay

e + p+ ! n + e

(1.20)

8

since the reaction needs energy of at least ( mn)c2 where mn is the neutron-proton mass di erence. Clearly m > me ( -decay would otherwise be impossible) and in fact m 3me. So we need energies of order of 3mec2 for inverse -decay. This is not available in White Dwarf stars but for M > MC the star must continue to contract until EF ( mn)c2. At this point inverse -decay can occur. The reaction cannot come to equilibrium with the reverse reaction

n + e ! e + p+

(1.21)

because the neutrinos escape from the star, and -decay,

 

n ! e + p+ e

(1.22)

cannot occur because all electron energy levels below E < ( mn)c2 arelled when E > ( mn)c2. Since inverse -decay removes the electron degeneracy pressure the star will undergo a catastrophic collapse to nuclear matter density, at which point we must take neutron-degeneracy pressure into account.

Can neutron-degeneracy pressure support the star against collapse?

The ideal gas approximation would give same result as before but with me ! mp. The critical mass MC is independent of me and so is una ected,

but the critical radius is now

 

c2

 

mp

 

mp2 Gc

 

 

me

 

1 ~3

 

1=2

GMC

 

 

 

RC

 

 

 

 

(1.23)

which is the Schwarzschild radius, so the neglect of GR e ects was not justi ed. Also, at nuclear matter densities the ideal gas approximation is not justi ed. A perfect uid approximation is reasonable (since viscosity can't help). Assume that P ( ) ( = density of uid) satis es

i)

P 0

(local stability).

(1.24)

ii)

P 0 < c2

(causality).

(1.25)

Then the known behaviour of P ( ) at low nuclear densities gives

 

Mmax 3M :

 

(1.26)

More massive stars must continue to collapse either to an unknown new ultra-high density state of matter or to a black hole. The latter is more

9

likely. In any case, there must be some mass at which gravitational collapse to a black hole is unavoidable because the density at the Schwarzschild radius decreases as the total mass increases. In the limit of very large mass the collapse is well-approximated by assuming the collapsing material to be a pressure-free ball of uid. We shall consider this case shortly.

10

Соседние файлы в предмете Физика