
- •Основные определения, представление графа в эвм
- •Основные определения
- •Способы представления графов
- •Математическое представление графов
- •Матричное представление орграфов
- •Связное представление орграфов.
- •Алгоритмы на графах
- •Алгоритмы обхода графов в глубину и по уровням
- •Обход в глубину
- •Обход по уровням
- •Алгоритмы поиска минимального остовного дерева
- •Алгоритм Дейкстры-Прима
- •Алгоритм Крускала
- •Алгоритмы поиска кратчайшего пути
- •Алгоритм Дейкстры
Алгоритм Дейкстры-Прима
Дейкстра и Прим предложили так называемый «жадный» алгоритм построения МОД. «Жадные» алгоритмы действуют, используя в каждый момент часть исходных данных и принимая лучшее решение на основе этой части. В рассматриваемом случае на каждом шаге имеется множество ребер, которые могут быть присоединены к уже построенной части остовного дерева, из них выбирается ребро с наименьшим весом. Вершины графа разбиваются на три класса: вершины, вошедшие в уже построенную часть дерева, вершины, окаймляющие построенную часть, и еще не рассмотренные вершины. Алгоритм начинает работу с произвольной вершины графа, которая включается в остовное дерево. Все вершины, соединенные (соседние) с данной, заносятся в кайму. Затем выполняется цикл поиска ребра с наименьшим весом, соединяющего уже построенную часть остовного дерева с каймой; это ребро вместе с новой вершиной добавляется в дерево и происходит обновление каймы таким образом, чтобы список ребер из дерева в кайму включал ребра с наименьшими весами. После того, как в дерево попадут все вершины, работа будет закончена. Словесный алгоритм приведен ниже:
Шаг 1. Выбрать начальный узел
Шаг 2. Сформировать начальную кайму, состоящую из вершин, соседних с начальным узлом
Шаг 3. В графе есть вершины, не попавшие в дерево?
Если да, то переход на Шаг 4.
Иначе – переход на Шаг 9.
Шаг 4. Выбрать ребро из дерева в кайму с наименьшим весом
Шаг 5. Добавить конец ребра к дереву
Шаг 6. Изменить кайму, для чего добавить в кайму вершины, соседние с новой
Шаг 7. Обновить список ребер из дерева в кайму так, чтобы он состоял из ребер наименьшего веса
Шаг 8. Переход на Шаг 3
Шаг 9. Конец
На Рис. 3 .6 изображен исходный граф:
Рис. 3.6. Исходный граф
Рис. 3.7. Добавление первой вершины. Пунктиры ведут к вершинам каймы
Рис. 3.8. Добавление второй и третьей вершин
Рис. 3.9. Добавление четвертой и пятой вершин
Рис. 3.10. Заключительные шаги алгоритма Дейкстры-Прима
Алгоритм Крускала
Другой алгоритм построения МОД предложил Крускал. Алгоритм начинает работу с пустого дерева. К нему добавляются ребра в порядке возрастания их весов до тех пор, пока не будет получен набор ребер, объединяющий все вершины графа. В процессе выполнения необходимо не допускать добавление ребер, приводящих к появлению цикла в создаваемом дереве. Если ребра закончатся до того, как все вершины будут соединены между собой, это означает, что граф был несвязным, и полученный результат представляет собой объединение МОД всех его компонент связности. Пример алгоритма приведен ниже:
1. Отсортировать ребра в порядке возрастания весов
2. Инициализировать структуру разбиений
edgeCount=l
while edgeCount<=E and includedCount<=N-l do
parentl=FindRoot(edge[edgeCount].start)
parent2=FindRoot(edge[edgeCount].end)
if parentl/=parent2 then
добавить edge[edgeCount] в остовное дерево
includedCount=includedCount+l
Union(parent1,parent2)
end if
edgeCount=edgeCount+l
end while
Для иллюстрации действия алгоритма будем использовать граф, приведенный на Рис. 3 .6.
Рис. 3.11. Добавление первого ребра
Рис. 3.12. Добавление второго и третьего ребра
Рис. 3.13. Добавление четвертого и пятого ребер
Рис. 3.14. Заключительные шаги алгоритма Крускала