
ИДЗ_1 / VAR-1
.PDF
zadanie N 14 |
wARIANT 1 |
dIFFERENCIALXNYE URAWNENIQ I SISTEMY
1. nAJTI OB]IE RE[ENIQ URAWNENIJ PERWOGO PORQDKA
|
y0 |
y |
1 |
|
|
||||
1) |
; x |
= |
|
|
|
|
|
: |
|
sin(y=x) |
|||||||||
2) |
y0 |
+ y cos x = cos x: |
|||||||
3) |
y0 |
+ y = xp |
|
|
|
|
|||
y: |
|
||||||||
|
e;x2 dy |
|
|
dx |
|
||||
4) |
|
|
+ |
|
= 0: |
||||
|
x |
cos2 y |
|||||||
5) |
(3x2 + 6xy2) dx + (6x2y + 4y3) dy = 0: |
||||||||
6) |
2(4y2 + 4y ; x) y0 |
= 1: |
2. nAJTI ^ASTNYE RE[ENIQ URAWNENIJ |
|
||||
|
p |
|
|
|
|
1) |
2 |
+ 1 dx = x y dy |
y(1) = 0: |
||
y |
|||||
2) |
(x ; y) dx + (x + y) dy = 0 |
y(1) = 1: |
|||
3) |
xy0 ; 2y = 2x4 |
y(1) = 0: |
|||
4) |
y0 + xy = (1 + x) e;x y2 |
y(0) = 1: |
3. nAJTI RE[ENIQ URAWNENIJ WYS[EGO PORQDKA
1) 2xy0y00 = y02 ; 1: 3) y00 cos2 x = 1:
5) y00 + y = 2 + cos3 x: cos2 x
7) y00 + 2y0 + y = (12x ; 10) e;x:
9) y000 ; 4y00 + 5y0 ; 2y = (16 ; 12x)e;x:
11)x2 y00 + xy0 + y = 0
13)x + 2x + 5x = ;8e;t sin 2t
14)x ; 6x + 25x = 9 sin 4t ; 24 cos 4t
4.nAJTI RE[ENIQ LINEJNYH SISTEM
2) y00 |
= y0 ey |
y(0) = 0 |
: |
|
||
|
|
y0(0) |
= 1 |
|
|
|
4) y00 |
+ y0 = cos x: |
|
|
|
||
6) y00 |
+ 2y0 + y = x ex + |
1 |
: |
|||
x ex |
||||||
|
|
|
|
|
||
8) y00 |
; 3y0 = 2 sin 3x ; cos 3x: |
|||||
10) y000 + 3y00 + 2y0 = 1 ; x2: |
|
|||||
12) x2 y00 ; 6y = 12 ln x: |
|
|
||||
x(0) = 2 |
x(0) |
= 6: |
|
|
||
x(0) = 2 |
x(0) |
= ;2: |
|
1) |
8 x = ;8x + 4y |
: |
2) |
8 x = 6x + 5y |
|
x(0) = 0 |
|
|
< y = 3x ; 4y |
|
|
|
< y = ;x + 2y |
|
y(0) = 1: |
|
: |
|
|
|
: |
|
|
3) 8 x = 5x ; 2y |
: |
|
4) 8 x = 6x + 4y + 2t |
: |
|||
|
< y = 2x + y |
|
|
|
< y = ;x + 10y ; 1 |
|
|
|
: |
|
|
|
23: |
|
|

zadanie N 15 |
wARIANT 1 |
~ISLOWYE I FUNKCIONALXNYE RQDY.
1. nAJTI SUMMY ^ISLOWYH RQDOW
1) |
1 (;1)n n |
|
2) |
|
1 |
|
|
|
|
|
7 |
|
|
|||||
|
X |
|
|
2 |
; |
|
; |
|
||||||||||
|
X |
3 |
|
|
|
|
49n |
7n |
12 |
|||||||||
|
n=0 |
|
|
|
|
n=1 |
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
2. iSSLEDOWATX RQDY NA SHODIMOSTX |
|
|||||||||||||||||
|
|
1 |
nn |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1) |
X |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2) |
|
|
(n!)2 |
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
n=1 |
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
3) |
1 (;1)n arctg |
|
1 |
|
|
|
4) |
||||||||||
|
|
|
|
|
|
|
|
|||||||||||
|
3 |
|
|
|
1 |
|
|
|||||||||||
|
|
n=1 |
n |
; |
1 |
|
|
|
pn |
; |
|
|
|
|
||||
|
|
X |
|
|
|
; |
n2 |
|
|
|
|
|
|
|
||||
|
|
1 |
7n + 4 |
|
|
|
|
|
|
|
|
|
|
|||||
|
5) |
X |
7n + 5! |
|
|
|
|
|
|
|
|
|
|
6) |
||||
|
|
n=1 |
|
n |
|
|
|
|
|
|
|
|
||||||
|
7) |
1 |
|
|
(;1)2 |
|
|
|
|
|
|
8) |
||||||
|
X |
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
(n=3) ln (n + 7) |
|
|
|
|
|
|||||||||||
|
|
n=2 |
|
|
|
|
|
|
3) |
1 |
|
|
|
|
|
n + 6 |
|||||
|
|
X |
|
|
|
|
|
|
|
|
|
|
|
|
|
n=1 n(n + 2)(n + 3) |
|||||||||||
1 |
|
n cos |
2 |
n |
|
|
|
|
|
||||
|
|
|
|
|
3 |
|
|
|
|
|
|||
X |
(;1) n2 + 2n |
||||||||||||
n=1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
1 arcsin2n |
|
|
n + 1 |
||||||||||
|
|
|
|
|
|
|
|
|
|
||||
|
2n + 3! |
||||||||||||
X |
|
|
|
|
|||||||||
n=1 |
|
|
|
||||||||||
5 |
|
|
|
|
|
1 |
|
|
|||||
|
|
|
|
|
|
|
|
|
|||||
X |
|
u |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
1 |
(;1)nvln 1 + n2 ! |
||||||||||||
n=1 |
t |
|
|
|
|
|
|
|
|
|
|
||
1 |
1 4 7 (3n ; 2) |
||||||||||||
X |
|
2n+1 |
|
n! |
|||||||||
n=1 |
|
|
|
|
|
|
|
|
|
|
|
|
3. nAJTI INTERWALY SHODIMOSTI FUNKCIONALXNYH RQDOW
|
1 |
|
2nxn |
||
1) |
X |
|
|
||
n2 |
+ 1 |
||||
|
|
||||
|
|
|
|||
|
n=1 |
|
|||
3) |
1 |
(ln x)n |
|||
|
X |
|
|||
|
n=1 |
|
2) |
1 |
( |
1)n (x ; 5)n |
|
X |
; |
n3n |
|
n=1 |
||
4) |
1 |
(;1)ne;n(x;2) |
|
|
X |
|
|
|
n=1 |
|
|
4. nAJTI SUMMY FUNKCIONALXNYH RQDOW
|
1 |
n 1 |
1 |
1 |
n |
|
1 |
2 |
n |
1) |
X |
(;1) ; |
n + n + 1! x |
2) |
X |
(n + 5n + 3)x |
|
||
n=1 |
n=0 |
|
5. rAZLOVITX W RQD tEJLORA PO STEPENQM |
(x |
; x0) |
||||||||
|
|
|
|
|
||||||
1) y = ln p |
|
(1 ; 2x) x0 = 0 |
|
|
|
|
|
|||
1 + 5x |
|
|
2) y = |
|||||||
|
|
|
2x |
|
|
|
p |
|
|
|
3) y = x e |
x0 = 3 4) |
y = |
5 |
|
x |
FUNKCII
ch3x ; 1 |
x0 = 0 |
x2 |
|
x0 = ;1: |
|
6. wY^ISLITX INTEGRALY S TO^NOSTX@ DO 0,001
0 1 |
0 5 |
1 |
|
|||
1) Z |
sin 8x2 dx |
2) Z |
p3 |
dx |
||
27 + x3 |
||||||
0 |
|
0 |
|
|
|
24

zadanie N 16 |
wARIANT 1 |
rQDY fURXE. iNTEGRAL fURXE
1. zADANNU@ NA INTERWALE (;l l) FUNKCI@ RAZLOVITX W TRIGONOMET- RI^ESKIJ RQD fURXE. pOSTROITX GRAFIK SUMMY POLU^ENNOGO RQDA.
|
1) f(x) = 2x ; 3 x 2 (; ) |
||||||||
|
2) f(x) = 2 + cos2 3x |
x 2 (;1 1) |
|||||||
|
3) f(x) = 8 |
; |
2x |
|
; < x < 0 |
||||
|
|
|
< |
=2 |
|
0 x < |
|||
2. fUNKCI@ f(x) = 8 |
|
: |
|
|
|
|
|
|
|
1 ; x |
0 < x < 1 |
RAZLOVITX W RQD fURXE PO |
|||||||
|
< |
0 |
1 x < 3 |
|
|||||
|
: |
|
|
|
|
(sin |
n x |
n = 1 2 :::1). pOSTRO- |
|
ORTOGONALXNOJ SISTEME FUNKCIJ |
|
3 |
|||||||
ITX GRAFIK SUMMY POLU^ENNOGO RQDA. |
|
|
|||||||
3. fUNKCI@ |
f(x) = 8 |
0 |
0 < x < 1 |
RAZLOVITX W RQD fURXE |
|||||
|
< x |
; 2 |
1 x < 2 |
|
|||||
|
: |
|
|
n x |
|
n = 0 1 2 :::1). pOSTROITX |
|||
PO ORTOGONALXNOJ SISTEME (cos |
|
2 |
|
||||||
GRAFIK SUMMY POLU^ENNOGO RQDA. |
|
|
|
|
|||||
4. fUNKCI@ |
f(x) = |
ex |
x |
2 (;1 |
1) |
PREDSTAWITX TRIGONOMET- |
RI^ESKIM RQDOM fURXE W KOMPLEKSNOJ FORME. zAPISATX:
a)SPEKTRALXNU@ FUNKCI@ S(!n),
b)AMPLITUDNYJ SPEKTR A(!n) = jS(!n)j
c)FAZOWYJ SPEKTR '(!n) = arg S(!n).
|
|
|
x |
|
|
|
|
|
5. fUNKCI@ f(x) = |
|
|
|
x 2 (;1 1) |
PREDSTAWITX INTEGRA- |
|||
|
1 + x2 |
|||||||
LOM fURXE. |
|
|
|
|
|
|
|
|
6. nAJTI PREOBRAZOWANIE fURXE F (!) FUNKCII |
||||||||
|
|
|
f(x) = 8 x2 |
jxj 2 |
|
|||
|
|
|
|
|
< |
0 |
jxj > 2 |
|
7. |
|
|
|
|
: |
|
|
FUNKCII |
|
nAJTI SINUS PREOBRAZOWANIE fURXE Fs(!) |
|||||||
|
|
f(x) = 8 x + 2 0 < x 1 |
||||||
|
|
< |
0 |
x > 1 |
|
|||
|
|
: |
|
25 |
|
|

zadanie N 17 |
|
|
|
|
|
|
|
|
|
wARIANT 1 |
|||||
|
|
|
|
|
|
kOMPLEKSNYE ^ISLA I FUNKCII |
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
z1 = p |
|
+ i |
|
|
|
|
|
|
||||
1. |
dANY ^ISLA |
3 |
z2 = 2 + 2i: |
wY^ISLITX: |
|||||||||||
|
|
|
|
|
|
|
|
|
1 ; z2 |
|
z1 z2 |
|
|||
1) |
2z1 |
; |
3z2 |
2) |
(z2)2 |
3) |
z |
4) |
|||||||
|
|||||||||||||||
|
|
|
|
|
|
|
|
|
z2 |
|
z1 + z2 |
||||
5) |
q |
|
|
6) |
ln z1 |
7) |
cos z2 |
8) |
sh z1: |
||||||
z12z2 |
|||||||||||||||
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rEZULXTATY WY^ISLENIJ PREDSTAWITX W POKAZATELXNOJ I ALGEBRAI- ^ESKOJ FORMAH.
2. oPREDELITX I POSTROITX NA KOMPLEKSNOJ PLOSKOSTI SEMEJSTWA LINIJ, ZADANNYH URAWNENIQMI
|
|
|
|
|
1) |
Im |
|
1 |
|
|
= C |
|
2) |
Re z2 = C: |
|||||||
|
|
|
|
|
|
|
|
|
|
||||||||||||
|
|
|
|
|
z + i |
|
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
3. |
rE[ITX URAWNENIQ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
1) |
|
sin z + cos z = 1 |
2) |
i e2z = 2 ; 2i |
|||||||||||||
4. |
nA KOMPLEKSNOJ PLOSKOSTI ZA[TRIHOWATX OBLASTI, W KOTORYH PRI |
||||||||||||||||||||
OTOBRAVENII FUNKCIEJ |
f(z) = 2z + 3i |
IMEET MESTO |
|||||||||||||||||||
|
a) |
SVATIE |
|
k 1 |
|
|
|
|
|
iz + 4 |
|
|
|
|
|
|
|||||
|
|
|
0 90o. |
|
|
|
|
|
|
||||||||||||
|
b) |
POWOROT NA UGOL |
|
|
|
|
|
|
|||||||||||||
5. |
dOKAZATX, ^TO FUNKCIQ v(x y) = |
x2 |
; y2 MOVET SLUVITX MNI- |
||||||||||||||||||
MOJ ^ASTX@ ANALITI^ESKOJ FUNKCII f(z) = u + iv I NAJTI EE. |
|||||||||||||||||||||
6. |
wY^ISLITX INTEGRALY |
|
|
|
|
|
|
|
|
|
|||||||||||
|
|
|
Z |
dz |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1) |
pz |
|
|
GDE |
|
L : f |
j z |
j = 1 |
Im z < 0 g |
||||||||||
|
|
|
(L) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2) |
Z |
(Re z + Im z) dz GDE |
L ; LOMANAQ (0 1 1 + 2i): |
||||||||||||||||
|
|
|
(L) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7. |
wY^ISLITX, ISPOLXZUQ INTEGRALXNU@ FORMULU kO[I |
||||||||||||||||||||
|
|
|
|
|
|
|
z2 dz |
|
|
|
|
|
|
|
8 |
1) |
jz |
; 1j = 1=2 |
|||
|
|
|
I |
|
|
|
|
|
|
GDE |
(L) : > |
2) |
jz + 1j = 1=2 |
||||||||
|
|
|
(z |
; |
1)2(z + 1) |
|
|||||||||||||||
|
|
|
(L) |
|
|
|
|
|
|
|
|
|
|
< |
3) |
j |
z |
j |
= 2 |
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
> |
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
: |
|
|
|
|
|

zadanie N 18 |
wARIANT 1 |
wY^ETY I IH PRILOVENIQ
1. iSSLEDOWATX NA ABSOL@TNU@ I USLOWNU@ SHODIMOSTX RQD
1 |
|
|
2 |
|
|
|
X |
|
|
|
|
|
: |
5n |
1 |
+ n |
; |
i |
||
n=1 |
; |
|
|
|
|
|
2. nAJTI I POSTROITX OBLASTX SHODIMOSTI RQDA
;1 |
|
n |
2n |
1 z2n |
|
||
X |
(;1) |
z |
; |
X |
4n+1 |
: |
|
n= |
;1 |
n=0 |
|||||
|
|
|
|
|
|
|
3. nAJTI WSE LORANOWSKIE RAZLOVENIQ DANNOJ FUNKCII PO STEPENQM
z ; z0 |
|
z + 2 |
|
|
|
|
z |
|
|
|
|
A) |
|
|
|
|
z0 = ;2: B) sin |
|
|
z0 |
= 1: |
||
|
|
|
|
|
|
|
|||||
(z |
; |
1)(z |
+ 3) |
z |
; |
1 |
4.nAJTI IZOLIROWANNYE OSOBYE TO^KI FUNKCII f(z) = th z I OPRE- DELITX IH TIP.
5.nAJTI WY^ETY FUNKCIJ W UKAZANNYH OSOBYH TO^KAH
A |
) |
e2iz |
1 |
|
z = |
|
|
z +; |
|||||
W) |
z3 + 1 |
|
z |
= 0 |
||
z |
e1=z |
|||||
D) |
z5 ln(1 + a=z) |
z = 1 |
6. wY^ISLITX INTEGRALY
A) |
jzjZ=3 |
|
|
|
zdz |
|
|||
|
|
|
|
|
|||||
(z + 2)2(z ; 1) |
|||||||||
|
1 |
|
x2 |
|
|||||
W) |
Z |
|
|
|
dx |
|
|||
1 + x4 |
|
||||||||
|
0 |
|
|
|
|
|
|
|
|
D) |
Z2 |
4p |
|
sindt t + 6 |
|
|
|||
2 |
|
||||||||
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
11zez=(z;4) |
|
|||||||||
B) |
|
|
|
|
|
|
|
|
|
|
|
z = 1 |
||
|
121 + 11z |
; |
2z2 |
|||||||||||
|
|
|
|
|
5z |
|
|
|
|
|
|
|||
|
|
|
|
e |
|
|
|
|
1 |
|
|
|
|
|
G) |
|
sin1z ; z;+ z3=6 |
|
z = 0, |
||||||||||
E) |
|
|
|
|
|
z = 0 |
|
|||||||
z3 ; z6 |
|
|||||||||||||
2 |
|
|
|
|
|
|
dt |
|
|
|
|
|||
B) Z |
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|||||||||
(1 + |
q |
10=11 cos t)2 |
||||||||||||
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+i1 |
|
ez |
|
|
|
|
|
|
|
|
|
|||
G) |
Z |
|
dz > 0 |
|||||||||||
z2 + 1 |
||||||||||||||
;i1 |
|
|
|
|
|
|
|
|
|
|
|
|||
E) |
Z |
(z + 1)e1=z dz |
|
|||||||||||
jzj=1=3 |
|
|
|
|
|
|
|
|
|
|
27

zadanie 19 |
wARIANT 1 |
oPERACIONNYJ METOD
1. nAJTI IZOBRAVENIQ SLEDU@]IH FUNKCIJ
|
|
1) |
f(t) = cos2 t: |
|
|
3) f(t) = Zt 2e;3 d : |
|
|
|
|
|
|
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
t |
: |
4) |
|
|
|
8 |
0 |
(t |
3) |
|
t < 3 |
|
|
|||||||
|
|
2) f(t) = t + 2e; |
f(t) = > e; ; |
|
3 t 4 |
||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
< |
0 |
|
|
|
t |
> 4: |
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
> |
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
: |
|
|
|
|
|
|
|
|
|
|
2. nAJTI ORIGINALY FUNKCIJ PO ZADANNYM IZOBRAVENIQM |
|||||||||||||||||||||||||||
|
|
|
1) F (p) = |
|
|
|
|
p |
|
|
|
|
: |
|
2) |
F (p) = |
|
e;p=2 |
|
: |
|||||||
|
|
|
(p ; 1)(p ; 2) |
|
p(p2 + 1) |
||||||||||||||||||||||
3. |
nAJTI RE[ENIE ZADA^I kO[I OPERACIONNYM METODOM |
|
|
||||||||||||||||||||||||
|
|
1) |
x + 5x = et |
|
|
|
|
|
|
|
|
|
x(0) = 0: |
|
|
|
|
||||||||||
|
|
2) |
x ; 2x + x = t ; sin t |
|
|
|
|
|
x(0) = 0 |
x(0) = 0: |
|||||||||||||||||
|
|
3) |
x + 7x + 6x = t2 + 3t |
|
|
|
|
|
x(0) = 0 |
x(0) = 2: |
|||||||||||||||||
|
|
4) |
9x + x = e3t + 2 |
|
|
|
|
|
|
|
x(0) = 2 |
x(0) = 0: |
|||||||||||||||
4. |
rE[ITX URAWNENIQ, ISPOLXZUQ FORMULU d@AMELQ |
|
|
|
|
||||||||||||||||||||||
|
1) |
x + x = |
|
1 |
|
|
|
|
x(0) = 0 x(0) = 0: |
|
|
|
|
|
|
|
|||||||||||
|
|
|
|
|
t |
|
|
|
|
|
|
|
|
||||||||||||||
|
|
|
|
1 + e |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
8 |
0 |
|
|
|
t |
< |
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2) |
x + 4x = |
> |
1 |
1 |
|
2 |
|
t |
|
3 |
|
x(0) = 0 |
|
x(0) = 0: |
||||||||||||
|
|
|
|
|
; |
|
3 |
< |
t |
|
|
4 |
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
< |
|
|
|
t |
> |
4 |
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
> |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5. nAJTI RE[ENIE SISTEM OPERACIONNYM METODOM |
|
|
|
|
|||||||||||||||||||||||
1) |
8 x = 7x ; |
2y |
|
|
x(0) = 0 |
|
|
|
2) 8 x = 6x + 5y |
|
|
x(0) = 1 |
|||||||||||||||
|
< y |
= ;x + 3y |
|
|
|
|
y(0) = 2: |
|
|
|
< y = ;2x + 4y |
|
y(0) = 0: |
||||||||||||||
|
: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
: |
|
|
|
|
|
|
|
|
|
28

zadanie 20 |
wARIANT 1 |
tEORIQ WEROQTNOSTEJ
1. w PERWOJ KOROBKE 5 BELYH I 3 ^ERNYH [ARA, WO WTOROJ KOROBKE 3 BELYH I 7 ^ERNYH [AROW. iZ PERWOJ KOROBKI WO WTORU@ NAUGAD PERE- LOVENO 4 [ARA, A ZATEM IZ WTOROJ KOROBKI IZWLEKA@T 2 [ARA. kAKOWA WEROQTNOSTX, ^TO OBA ONI BELYE?
2. w KRUG RADIUSA 0,1 M. WPISAN RAWNOSTORONNIJ TREUGOLXNIK. w KRUG NAUDA^U WBRASYWAETSQ 5 TO^EK. kAKOWA WEROQTNOSTX TOGO, ^TO:
1)4 TO^KI POPADUT WNUTRX TREUGOLXNIKA
2)NE MENEE 2-H TO^EK POPADUT WNUTRX TREUGOLXNIKA.
q3. iZDELIE PROWERQETSQ NA STANDARTNOSTX ODNIM IZ DWUH TOWARO- WEDOW. wEROQTNOSTX TOGO, ^TO IZDELIE POPADET K PERWOMU TOWAROWEDU, RAWNA 0.55, A KO WTOROMU { 0.45. wEROQTNOSTX TOGO, ^TO STANDART- NOE IZDELIE BUDET PRIZNANO STANDARTNYM PERWYM TOWAROWEDOM, RAW- NA 0.9, A WTORYM { 0.98. sTANDARTNOE IZDELIE PRI PROWERKE BYLO PRIZNANO STANDARTNYM. nAJTI WEROQTNOSTX TOGO, ^TO \TO IZDELIE PROWERIL WTOROJ TOWAROWED.
4.sREDNEE ^ISLO PASMURNYH DNEJ W GODU W DANNOJ MESTNOSTI RAWNO
78.nAJTI WEROQTNOSTX TOGO, ^TO W BLIVAJ[U@ NEDEL@ BUDET NE BO- LEE 3-H PASMURNYH DNEJ. (s^ITATX, ^TO W GODU ROWNO 52 NEDELI).
5.aWTOBUSY GORODSKOGO MAR[RUTA PODHODQT K DANNOJ OSTANOWKE S INTERWALOM 10 MINUT. kAKOWA WEROQTNOSTX, ^TO NEKTO, PODO[ED[IJ K OSTANOWKE W SLU^AJNYJ MOMENT WREMENI BUDET VDATX AWTOBUS NE BOLEE 6 MINUT ?
6.zADANA PLOTNOSTX RASPREDELENIQ NEPRERYWNOJ SLU^AJNOJ WELI-
^INY |
8 |
|
|
|
|
0 |
|
x < 2 |
|
|
|
; 4) |
2 x 4 |
|
|
f(x) = > a(x ; 2) (x |
|||
|
< |
0 |
|
x > 4 |
|
> |
|
||
1) |
: |
|
|
|
NAJTI ZNA^ENIE PARAMETRA "a " |
|
|||
2) |
NAJTI FUNKCI@ RASPREDELENIQ F (x) |
|||
3) |
POSTROITX GRAFIKI FUNKCIJ |
F(x) |
I f(x) |
|
4) |
WY^ISLITX M(X) D(X) I (X) |
|||
5) |
WY^ISLITX WEROQTNOSTX |
P (2:5 < X < 3:5). |
29

zadanie 21 |
wARIANT 1 |
mATEMATI^ESKAQ STATISTIKA
1. pROWODILSQ PODS^ET KOLI^ESTWA AWTOMOBILEJ PROEZVA@]IH MIMO POSTA gai W TE^ENII 1-OJ SLU^AJNO WYBRANNOJ MINUTY (SLU^AJNAQ WELI^INA X). tAKIH NABL@DENIJ PROWEDENO 30, REZULXTATY NABL@DE- NIJ PRIWEDENY W TABLICE. sKOLXKO, W SREDNEM, AWTOMOBILEJ PROEDET MIMO POSTA gai ZA NEDEL@?
|
N = 8 |
6 |
6 |
2 |
1 |
3 |
4 |
4 |
2 |
4 |
5 |
4 |
3 |
6 |
1 |
5 |
|
< |
5 |
4 |
6 |
5 |
3 |
2 |
6 |
1 |
1 |
3 |
5 |
3 |
4 |
2 |
3 |
2. |
: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
w REZULXTATE PROWEDENNYH SLU^AJNYH IZMERENIJ ABSOL@TNYH ZNA- |
^ENIJ TOKA (I a) W \LEKTRI^ESKOJ CEPI POLU^ENY SLEDU@]IE ZNA^E- NIQ:
I = 8 |
0 23 0 98 1 22 2 03 2 78 2 89 2 98 3:76 4 15 4 73 |
< |
5 25 5 33 5 67 5 89 6 17 6 89 6 97 8 34 9 76 9 76 |
: , - oPREDELITX SREDN@@ MO]NOSTX TOKA W CEPI ESLI EE AKTIWNOE SOPRO
TIWLENIE SOSTAWLQET 5 oM.
3. pO USLOWIQM ZADA^ 1 I 2
A) SOSTAWITX STATISTI^ESKU@ TABLICU RASPREDELENIQ OTNOSITELX- NYH ^ASTOT SLU^AJNOJ WELI^INY,
b) POSTROITX POLIGON I GISTOGRAMMU RASPREDELENIQ.
4. dANA STATISTI^ESKAQ TABLICA RASPREDELENIQ ^ASTOT W SLU^AJNOJ WYBORKE.
a)pOSTROITX POLIGON I GISTOGRAMMU RASPREDELENIQ.
b)nAJTI WELI^INY x I s2 WYBORKI.
c)zAPISATX TEORETI^ESKIJ ZAKON RASPREDELENIQ. nAJTI TEORETI- ^ESKIE ZNA^ENIQ WEROQTNOSTEJ I SRAWNITX IH S WELI^INAMI OTNOSI- TELXNYH ^ASTOT.
d)iSPOLXZOWATX KRITERIJ pIRSONA DLQ USTANOWLENIQ PRAWDOPO- DOBNOSTI WYBRANNOJ GIPOTEZY O ZAKONE RASPREDELENIQ.
1) |
xi |
0 1 2 3 4 5 6 7 8 9 |
|
ni |
15 7 6 8 11 10 11 9 12 11 |
||
|
(ISPOLXZOWATX ZAKON RAWNOMERNOGO RASPREDELENIQ)
30
|
|
2) |
|
xi |
|
0 |
1 2 3 4 5 6 7 8 9 |
|
|||||
|
|
|
ni |
|
3 |
7 10 |
17 |
18 21 |
11 5 |
7 3 |
|
||
|
|
|
|
|
|
|
|||||||
|
|
(ISPOLXZOWATX ZAKON RASPREDELENIQ pUASSONA) |
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
||
3) |
xi |
|
|
[0 2] |
[2 4] |
[4 6] |
[6 8] |
[8 10] |
[10 12] |
[12 14] |
[14 16] |
||
ni |
|
|
1 |
3 |
4 |
7 |
12 |
10 |
8 |
5 |
|||
|
|
|
(ISPOLXZOWATX ZAKON NORMALXNOGO RASPREDELENIQ)
5. dLQ NORMALXNO RASPREDELENNOJ SLU^AJNOJ WELI^INY (TABL.3, ZA- DA^A 4) OPREDELITX DOWERITELXNYJ INTERWAL, W KOTORYJ S NADEVNOS- TX@ p = 0 95 POPADAET ISTINNOE ZNA^ENIE (MATEMATI^ESKOE OVIDA- NIE) SLU^AJNOJ WELI^INY.
6. nAJTI DOWERITELXNYJ INTERWAL DLQ OCENKI MATEMATI^ESKOGO
OVIDANIQ a NORMALXNOGO RASPREDELENIQ S NADEVNOSTX@ |
0:95 ZNAQ |
||
WYBORO^NU@ SREDN@@ |
|
= 75:17 OB_EM WYBORKI n = 36 |
I SREDNE- |
x |
|||
KWADRATI^ESKOE OTKLONENIE = 6: |
|
7. pO DANNYM KORRELQCIONNOJ TABLICY ZNA^ENIJ xi yi WELI^IN X I Y
a)NANESTI TO^KI (xi yi) NA KOORDINATNU@ PLOSKOSTX I SOEDINITX IH LOMANOJ,
b)PODOBRATX FUNKCIONALXNU@ ZAWISIMOSTX y = f(x), NAIBOLEE HO- RO[O OPISYWA@]U@ DANNU@ KORRELQCIONNU@. lINEARIZOWATX, ESLI TREBUETSQ, \TU ZAWISIMOSTX, ISPOLXZUQ NOWYE PEREMENNYE,
c)SOSTAWITX URAWNENIE LINII REGRESSII I OPREDELITX KO\FFICI- ENT KORRELQCII. oCENITX TESNOTU SWQZI MEVDU WELI^INAMI X I Y .
1) |
|
xi |
9 |
11 |
13 |
15 |
17 |
19 |
21 |
23 |
|
|
|
yi |
6,78 |
4,81 |
3,90 |
2,70 |
1,75 |
0,85 |
{0,10 |
{1,20 |
|
||
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
2) |
|
xi |
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
|
|
yi |
|
2,32 |
3,01 |
3,27 |
3,79 |
3,90 |
4,15 |
4,35 |
4,52 |
|
|
|
|
|
|
31