
ИДЗ_1 / VAR-4
.PDF
kafedra
w m m f
wARIANT 4
w y s { a q matematika
sBORNIK INDIWIDUALXNYH DOMA[NIH ZADANIJ
DLQ STUDENTOW
TEHNI^ESKIH SPECIALXNOSTEJ tpu

tABLICA \KWIWALENTNYH BESKONE^NO MALYH
eSLI (x) ! 0, TO SPRAWEDLIWO:
1: sin (x) (x) |
|
|
|
|||||||
2: arcsin (x) (x) |
|
|
|
|||||||
3: tg (x) (x) |
|
|
|
|
||||||
4: arctg (x) (x) |
|
|
2 |
|||||||
5: 1 |
; cos (x) |
|
( (x)) |
|
||||||
2 |
|
|
|
|||||||
6: ln [1 + (x)] |
|
(x) |
|
|
||||||
|
|
|
|
|
|
(x) |
|
|
||
7: loga [1 + (x)] |
ln a |
|
|
|||||||
(x) |
|
|
|
|
|
|
||||
8: e (x) ; 1 |
|
|
(x) |
|
|
|
||||
9: a |
|
|
; 1 |
|
|
(x) ln a |
||||
|
n |
|
|
|
|
|
|
(x) |
||
10: q1 + (x) ; 1 |
|
n |
1: sin (x) (x) ; |
( (x))3 |
|
|
|
|||||||||
|
6 |
|
|
|
|
|
|||||||
2: arcsin (x) (x) + |
( (x))3 |
|
|||||||||||
|
|
6 |
|
|
|
|
|||||||
3: tg |
(x) (x) + |
( (x))3 |
|
|
|
|
|||||||
|
|
3 |
|
|
|
|
|
||||||
4: arctg (x) |
(x) |
; |
|
( (x))3 |
|
||||||||
|
|
3 |
|
|
|
|
|||||||
5: 1 ; cos (x) |
( (x))2 |
; |
( (x))4 |
||||||||||
|
|
2 |
|
|
|
24 |
|
||||||
6: ln [1 + (x)] (x) ; |
( (x))2 |
|
|||||||||||
|
|
2 |
|
|
|||||||||
7: e (x) ; 1 (x) + |
( (x))2 |
|
|
|
|||||||||
|
2 |
|
|
|
|
|
|||||||
8: n |
|
|
|
|
|
(x) |
|
|
1 ; n |
( (x))2 |
|||
1 + (x) |
; |
1 |
|
|
+ |
|
|||||||
|
|
|
|
|
|||||||||
|
n |
|
2n2 |
||||||||||
q |
|
|
|
|
|
|
wTOROJ ZAME^ATELXNYJ PREDEL
|
|
|
n |
|
|
|
x |
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
n |
|
|
|
x |
|
|
|
|
|
( |
) |
|
|
0 |
|
|
|
|
|
|||
lim 1 + |
1 |
|
= e |
lim 1 + |
1 |
= e |
|
|
|
|
lim |
|
(1 + (x)) (x) = e |
||||||||||
n!1 |
|
|
|
|
x!1 |
|
|
|
|
|
|
|
x |
! |
|
|
|
|
|
|
|||
|
|
|
|
|
e = 2 7182818284590::: |
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
sUMMA n ^LENOW ARIFMETI^ESKOJ PROGRESSII |
|||||||||||||||||||||
|
|
|
|
Sn = a1 + a2 + : : : + an = |
a1 + an |
|
n |
|
|
|
|
|
|||||||||||
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
||||||||||
sUMMA n ^LENOW GEOMETRI^ESKOJ PROGRESSII SO ZNAMENATELEM q |
|||||||||||||||||||||||
|
|
|
|
Sn = b1 + b1q + b1q2 + : : : + b1qn;1 = b1(1 |
; qn) |
||||||||||||||||||
|
|
|
|
|
pRI jqj < 1 |
|
|
S = |
|
b1 |
|
|
1 ; q |
||||||||||
|
|
|
|
|
|
|
|
1 ; q |
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
fAKTORIALY |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
0! = 1 |
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
1! = 1 |
|
|
|
|
|
|
|
|
|
|
|
|
||
|
n! = 1 2 3 |
4 : : : (n ; 1) n |
|
2! = 1 |
|
2 = 2 |
|
|
|
|
|
|
|||||||||||
|
|
|
|
|
|
|
|
|
3! = 1 |
|
2 |
3 = 6 |
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
4! = 24 |
|
|
|
5! = 120 ::: |
|
|
||||||||
(2n)! = 1 2 3 : : : n (n + 1) : : : (2n ; 1) 2n |
|
(2n)!! = 2 4 6 : : :(2n ; 2) 2n |
|||||||||||||||||||||
(2n+1)! = 1 2 3 : : : n (n+1) : : : 2n (2n+1) |
(2n+1)!! = 1 3 5 : : : (2n;1) (2n+1) |
||||||||||||||||||||||
|
|
|
|
|
fORMULA sTIRLINGA |
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
n |
n |
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
p2 n |
||||||||
|
|
|
pRI BOLX[IH ZNA^ENIQH n |
n! e |
|

eSLI C{KONSTANTA, A |
|
U(x) I V (x) { DIFFERENCIRUEMYE FUNKCII, TO |
|||||||||||||||||||||||||||||
|
|
oSNOWNYE PRAWILA DIFFERENCIROWANIQ |
|||||||||||||||||||||||||||||
1: ( |
C ) |
0 |
= |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
0 |
|
|
0 |
|
|
|
6: [y(U(x))] = yu |
|
Ux |
|
||||||||
2: ( C |
|
|
U ) |
0 |
= |
|
C |
|
U |
0 |
|
|
|
|
|
|
|
|
|
0 |
|
|
0 |
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
3: ( |
U |
|
|
V ) = |
|
U |
|
V |
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
0 |
|
|
|
|
0 |
|
|
|
|
|
|
0 |
0 |
|
|
|
|
|
|
|
|
|
||||
4: ( |
U |
|
|
V |
) |
|
= |
|
U |
|
|
V |
+ |
U |
V |
|
7: x |
(y) = |
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
yx0 (x) |
|
|
|
|
|
|||||||||||||||||||||
|
|
|
|
0 |
|
|
|
|
0 |
|
|
|
|
|
0 |
|
|
|
y |
|
|
|
|
|
|
|
|||||
5: |
|
U |
|
= |
U |
|
V |
|
; |
U V |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
V |
|
|
|
|
|
|
|
V 2 |
|
|
|
|
|
8: y0(x) = y(x) (ln y(x))0 |
|
|||||||||||||||
|
|
|
|
|
|
9: UV 0 = V UV ;1 U0 + UV ln U V 0 |
|
|
|
|
|
|
|
||||||||||||||||||
10: |
( |
x = x(t) |
|
|
|
|
|
y0(x) = |
y0(t) |
y00(x) = |
y00(t)x0(t) |
; x00(t)y0(t) |
|
||||||||||||||||||
|
y = y(t) |
|
|
|
|
|
|
|
|
|
x0 |
t |
) |
|
|
|
( |
x0 |
|
t |
|
3 |
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
( |
|
|
|
|
|
( )) |
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tABLICA PROIZWODNYH
1: Uk 0
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
pU |
|
|
|
1 |
|
|
|
|
0 |
||||
|
|
|
|
|
|
|
|
|
||||||
2: |
|
|
= |
2p |
|
|
U |
|
||||||
0 |
|
U |
|
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
1 |
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
0 |
|
|||||
|
|
|
|
|
|
|
|
|
|
|||||
3: |
|
|
|
= ; |
|
U |
|
|
||||||
U |
|
U2 |
|
|
||||||||||
4: aU 0 |
|
= aU ln a U0 |
||||||||||||
5: eU 0 |
= eU U0 |
|
|
|
0 |
|
|
|
1 |
|
U |
0 |
|
|
|
|
|||||
10: (tg U) |
= |
|
|
|
|
|
|
|
|
|
||||||
cos2 U |
|
|
|
|
|
|||||||||||
|
0 |
|
|
1 |
|
|
U |
0 |
|
|
||||||
11: (ctg U) |
= ; |
|
|
|
|
|
|
|
|
|||||||
sin2 U |
|
|
|
|||||||||||||
12: (arcsin U)0 |
= p |
1 |
|
U0 |
||||||||||||
1 |
|
U2 |
||||||||||||||
|
|
|
|
; |
|
|
|
|
|
|
||||||
13: (arccos U)0 = ;p |
|
|
1 |
|
|
U0 |
||||||||||
1 |
|
; |
U2 |
|||||||||||||
|
|
|
|
1 |
|
|
|
|
|
|
||||||
|
|
0 |
|
|
|
|
|
|
|
0 |
|
|||||
14: (arctg U) |
= |
|
|
U |
|
|
||||||||||
1 + U2 |
|
|
|
|
0 |
1 |
|
|
|
0 |
|
|
|
0 |
|
|
|
1 |
|
0 |
||||
6: (logaU) |
|
= |
|
|
|
U |
|
15: (arcctg |
U) |
|
= ; |
|
|
U |
|
||||||
|
U ln a |
|
|
1 + U2 |
|
||||||||||||||||
0 |
|
|
|
1 |
U0 |
|
|
|
16: (sh U)0 |
= ch U U0 |
|
|
|
|
|||||||
7: (ln U) = |
|
|
|
|
|
|
|
||||||||||||||
U |
|
|
|
|
|
|
|
||||||||||||||
8: (sin U)0 |
= cos U U0 |
|
|
|
17: (ch U)0 |
= sh U U0 |
|
|
|
|
|||||||||||
9: (cos U) |
0 |
|
= ;sin U U |
0 |
|
18: (th U) |
0 |
= |
|
1 |
U |
0 |
|
|
|||||||
|
|
|
|
|
|
|
|
|
|||||||||||||
|
|
|
|
|
ch2 U |
|
|
|
5

oSNOWNYE NEOPREDEL<NNYE INTEGRALY
|
|
|
|
|
k+1 |
||||
1. Z |
Uk dU = |
U |
+ C |
||||||
k + 1 |
|||||||||
|
|
|
(k = |
1) |
|
||||
2. Z |
|
|
6 ; |
|
|
|
|||
dU = U + C |
|||||||||
|
dU |
|
|
|
|
|
|
||
3. Z |
= 2pU + C |
||||||||
p |
|
||||||||
U |
4. Z |
dUU2 |
= ; |
1 |
+ C |
U |
||||
5. Z |
dUU = ln jUj + C |
6. Z |
aU dU = |
aU |
|||||
|
+ C |
||||||
ln a |
|||||||
7. Z eU dU = eU + C |
|||||||
8. |
sin U dU = ;cos U +C |
||||||
9. |
ZZ |
cos U dU = sin U +C |
|||||
10. Z |
|
dU |
= tg U + C |
||||
|
cos2 U |
||||||
11. Z |
|
dU |
= ;ctg U +C |
||||
|
|
|
|||||
|
sin2 U |
12. |
Z |
|
tg U dU = ;ln jcos Uj + C |
||||||||||||||||||||||||||||
13. |
|
ctg U dU = ln |
sin U |
j |
+ C |
||||||||||||||||||||||||||
|
Z |
|
|
|
dU |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
jU |
|
|
|
|
|
|
|
|
|||
14. Z |
|
|
|
|
|
|
|
|
= ln |
|
tg |
|
|
|
+ C |
|
|
|
|||||||||||||
|
|
sin U |
|
2 |
U |
|
|
|
|||||||||||||||||||||||
|
|
|
|
|
|
dU |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
15. |
Z |
|
|
|
|
|
|
|
|
= ln tg |
|
|
+ |
|
4 + C |
||||||||||||||||
|
|
cos U |
2 |
|
|||||||||||||||||||||||||||
16. Z |
|
|
|
|
dU |
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
U |
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
= a arctg a |
|
+ C |
|
|
|||||||||||||||||||||
a2 + U2 |
|
|
|||||||||||||||||||||||||||||
17. |
Z |
|
|
|
|
dU |
|
|
= |
|
1 |
ln |
|
U |
; a |
|
+ C |
||||||||||||||
|
U2 ; a2 |
|
|
|
|
|
|
||||||||||||||||||||||||
|
|
|
|
|
|
2a |
|
|
U + a |
|
|
|
|||||||||||||||||||
18. Z |
|
p |
dU |
|
|
|
|
|
|
|
|
|
|
|
U |
|
|
|
|
||||||||||||
|
|
|
|
|
|
|
|
|
|
= arcsin a |
+ C |
||||||||||||||||||||
|
a2 |
; |
U2 |
||||||||||||||||||||||||||||
|
|
|
|
|
|
dU |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
19. Z |
p |
|
|
|
|
= ln jU |
+pU2 a2j+C |
||||||||||||||||||||||||
|
|
|
|
|
|
|
|||||||||||||||||||||||||
U2 |
|
|
a2 |
||||||||||||||||||||||||||||
20. |
Z |
sh U dU = ch U + C |
|
|
|
|
|
||||||||||||||||||||||||
21. Z |
|
ch U dU = sh U + C |
|
|
|
|
|||||||||||||||||||||||||
22. Z |
|
|
dU |
|
|
|
|
|
= th U + C |
|
|
|
|
|
|
|
|
||||||||||||||
|
ch2 U |
|
|
|
|
|
|
|
|
||||||||||||||||||||||
23. Z |
|
|
dU |
|
|
|
|
|
= ;cth U + C |
|
|
|
|
|
|||||||||||||||||
|
|
|
|
|
|
|
|
||||||||||||||||||||||||
|
sh2 U |
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
||
24. Z pU2 a2 dU = |
U p |
U2 a2 |
a2 ln jU U+ pU2 a2j +C |
|||||||||||
12 |
||||||||||||||
|
|
|
|
|
||||||||||
25. Z pa2 ; U2 dU = |
|
|
||||||||||||
2 |
|
U pa2 ; U2 + a2arcsin a ! + C |
||||||||||||
26. Z e U sin U dU = |
|
|
e U |
|||||||||||
|
|
|
( sin U ; cos U) + C |
|||||||||||
2 |
+ 2 |
|||||||||||||
27. Z e U cos U dU = |
|
e U |
||||||||||||
|
|
( cos U + sin U) + C |
||||||||||||
2 |
+ 2 |

rQDY mAKLORENA \LEMENTARNYH FUNKCIJ
1: ex = 1 + x + x2 |
+ x3 + : : : + xn |
|
|
+ : : : = 1 xn |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||
|
|
|
|
|
2! |
|
|
3! |
|
|
|
|
|
|
|
|
n! |
|
|
|
|
|
|
|
n=0 |
n! |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
x3 |
|
x5 |
|
|
|
|
|
x2n+1 |
|
X |
1 |
|
|
|
|
x2n+1 |
|
|
|
|
|
|
|
||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||
2: sh x = x + |
3! + |
5! + |
: : : + |
|
|
|
|
|
|
|
+ : : : = n=0 |
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||
(2n + 1)! |
|
(2n + 1)! |
|||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
x |
2 |
|
x |
4 |
|
|
|
|
|
|
|
x |
2n |
|
|
|
|
|
|
|
1 |
|
X2n |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
3: ch x = 1 + |
2! + |
|
+ |
: : : + |
|
|
|
|
+ : : : = n=0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||
4! |
(2n)! |
(2n)! |
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||||||
|
|
|
|
x3 |
|
x5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
x2n+1 |
|
X |
|
|
|
1 |
|
|
|
|
|
|
|
|
|
x2n+1 |
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||
4: sin |
x= x; 3! + |
5! ;: : :+(;1)n |
|
|
|
|
+: : := |
|
|
|
|
|
(;1)n |
|
|
|
|
|
|||||||||||||||||||||||||||||||||
(2n + 1)! |
n=0 |
(2n + 1)! |
|||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
x2 |
|
|
x4 |
|
|
|
|
|
|
|
|
|
|
|
x2n |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x2n |
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X |
|
|
|
|
|
|
|
|
||||||||||||||||||
5: cos |
x = 1 ; |
2! + |
4! ; : : : + (;1)n |
|
|
+ : : : = |
|
|
|
|
|
(;1)n |
|
|
|
|
|||||||||||||||||||||||||||||||||||
(2n)! |
n=0 |
(2n)! |
|||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
m |
|
|
|
|
m(m |
|
|
1) |
|
|
|
|
|
|
m(m |
|
|
|
|
|
|
|
X |
|
2) |
|
|
|
|
|
|
|
|
|
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
; |
1)(m |
; |
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||
6: (1 + x)m = 1 + |
1! x + |
|
|
2!; |
|
|
|
x2 + |
|
|
|
|
3! |
|
|
|
|
|
|
x3 + : : : |
|||||||||||||||||||||||||||||||
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
= 1 ; x + x2 ; x3 + : : : + (;1)n xn + : : : = n=0(;1)n xn |
||||||||||||||||||||||||||||||||||||||||||||||||||
7: |
|
||||||||||||||||||||||||||||||||||||||||||||||||||
1 + x |
|||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
x2 |
x3 |
|
|
|
|
|
|
|
|
|
|
|
|
xn+1 |
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
xn+1 |
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X |
|
|
|
|
|
|
|||||||||||||||||||
8: ln (1 + x) = x; 2 + 3 ;: : :+(;1)n |
|
|
+: : := (;1)n |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||
n + 1 |
n + 1 |
||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
x3 |
|
x5 |
|
|
|
|
|
|
|
|
|
|
x2n+1 |
|
|
|
|
|
|
|
|
|
n=0 |
|
|
|
|
|
x2n+1 |
|||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X |
|
|
|
|
|
|
|||||||||||||||||||
9: arctg x= x; |
3 + 5 ;: : :+(;1)n |
|
+: : := |
|
|
|
|
|
(;1)n |
|
|
||||||||||||||||||||||||||||||||||||||||
(2n + 1) |
n=0 |
(2n + 1) |
|||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
3 |
|
|
|
|
|
|
|
|
5 |
|
|
|
|
|
|
|
|
|
|
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
1 |
3 |
|
|
|
+ 1 |
3 |
5 x |
|
|
|
X |
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||
10: arcsin x = x + |
1 x |
+ |
|
|
x |
|
+ : : : |
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||
|
|
|
|
|
|
2 3 |
|
|
|
22 |
2! 5 |
|
23 3! 7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||
|
|
|
|
1 |
3 |
|
|
2 |
|
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11: tg x = x + 3x |
|
+ |
15 |
|
x |
+ : : : |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
12: th x = x ; |
1 |
3 |
+ |
2 |
|
|
5 |
; : : : |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
3 x |
15 |
x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7
rQD I INTEGRAL fURXE (OSNOWNYE FORMULY)
|
|
1. |
rQD fURXE FUNKCII, ZADANNOJ NA INTERWALE [ |
; |
|
] |
|
||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
a0 |
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
f(x) = |
|
+ |
|
|
|
|
an cos nx + bn sin nx |
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
n=1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
= 1 |
|
|
|
|
|
|
|
= 1 |
|
|
|
|
|
|
|
X |
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
Z |
(x)dx |
|
Z |
f(x) cos nx dx |
|
bn = |
|
Z |
|
|
(x) sin nx dx |
|
|||||||||||||||||||||||||||||||||||||
|
a0 |
|
f |
an |
|
|
|
|
|
f |
|
||||||||||||||||||||||||||||||||||||||||
|
|
|
|
; |
|
|
|
|
|
|
|
|
; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
; |
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
2. |
rQD fURXE FUNKCII, ZADANNOJ NA INTERWALE [ |
|
l |
l] |
|
|||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
a0 |
|
|
|
|
1 |
|
|
|
|
|
n |
|
|
|
|
|
|
|
|
|
n ; |
|
|
|
|
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
f(x) = |
+ |
X |
an cos |
x + bn sin |
|
|
|
|
||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
l |
|
|
l |
x |
|
|
|
|
|
|
|
||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n=1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
a0 = 1l ;Zl f(x)dx |
an = 1l ;Zl f(x) cos |
n |
x dx |
|
bn = 1l ;Zl |
f(x) sin |
n |
|
x dx |
||||||||||||||||||||||||||||||||||||||||||
l |
|
|
l |
||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
l |
|
|
|
|
|
|
|
|
l |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
l |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3. rQD fURXE FUNKCII, ZADANNOJ NA INTERWALE [0 l] |
|
|||||||||||||||||||||||||||||||||||||||||||||||
pO SINUSAM |
|
|
|
|
|
|
|
|
|
pO KOSINUSAM |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||
|
1 |
|
|
n |
|
|
|
|
|
|
|
|
|
|
|
|
a0 |
|
|
|
|
1 |
|
|
|
|
|
|
n |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
f(x) = |
X |
bn sin |
x |
|
|
|
f(x) = |
|
+ |
|
X |
an cos |
x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||
|
l |
|
|
|
|
|
2 |
|
|
l |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||
|
n=1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n=1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
bn = 2l Zl |
f(x) sin |
n |
x dx |
|
|
a0 = 2l |
|
Zl f(x)dx |
|
|
an = 2l Zl f(x) cos |
n |
x dx |
||||||||||||||||||||||||||||||||||||||
l |
|
|
|
|
|
l |
|||||||||||||||||||||||||||||||||||||||||||||
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
l |
|
|
|
|
|
|
|
|
|
|
||
|
|
|
4. rQD fURXE f(x) |
x |
|
( |
|
|
|
l l) W KOMPLEKSNOJ FORME |
|
|
|
|
|||||||||||||||||||||||||||||||||||||
|
|
|
|
1 |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n |
|
|
|
|
|
|
|
|
|
|
|
|
|
;Zl |
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
X |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
f(x) = |
2 |
|
|
|
|
|
Sn(!n)e |
|
|
|
GDE |
|
|
!n = |
|
l |
|
|
|
Sn(!n) = |
l |
|
|
f(x)e |
dx |
||||||||||||||||||||||||||
|
|
|
|
n=;1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
5. iNTEGRAL fURXE FUNKCII f(x) |
|
x |
2 |
|
( |
;1 |
|
1 |
) |
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
1 |
0 |
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
x) dt1 d! |
|
|
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
f(x) = |
Z |
|
|
|
f |
(t) cos !(t |
; |
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
;1Z |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
A |
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
@ |
|
|
|
|
1 |
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
dLQ ^ETNOJ FUNKCII |
|
f(x) = 2 |
Z |
|
cos !x d! Z |
|
f(t) cos !t dt |
|
|
|
|
|||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
|
1 |
|
|
|
|
|
|
|
0 |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
dLQ NE^ETNOJ FUNKCII |
|
f(x) = 2 |
|
Z sin !x d! Z |
|
f(t) sin !t dt |
|
|||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6. pREOBRAZOWANIE fURXE FUNKCII f(x) x 2 (;1 1)
1
F (!) = Z f(x)e;i!xdx
;1
7. kOSINUS I SINUS PREOBRAZOWANIQ fURXE FUNKCII f(x) x |
2 |
(0 |
1 |
) |
|
1 |
1 |
|
|
|
|
Fc(!) = 2 Z f(x) cos !x dx |
Fs(!) = 2 Z f(x) sin !x dx |
|
|
||
0 |
0 |
|
|
|
|
8

tABLICA IZOBRAVENIJ I ORIGINALOW
|
f(t) |
|
|
|
F (p) |
|||||||||
1 |
|
1 |
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
p |
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
||
2 |
|
t |
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
p2 |
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|||
3 |
|
t2 |
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
p3 |
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|||
4 |
|
;at |
|
|
|
|
|
1 |
|
|
|
|
|
|
e |
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
p + a |
||||||||||
|
|
|
|
|
|
|
||||||||
5 |
|
;at |
|
|
|
|
|
1 |
|
|
|
|
|
|
t e |
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
(p + a)2 |
||||||||||||
|
|
|
|
|
||||||||||
6 |
2 |
|
;at |
|
|
|
|
|
2 |
|
|
|
|
|
t |
e |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(p + a)3 |
||||||||||||
|
|
|
|
|
||||||||||
7 |
f(t) |
0 t |
F (p)(1 |
; |
e;p ) |
|||||||||
|
( 0 t > |
|
|
|
|
|
|
|
|
|
||||
8 |
sin at |
|
|
|
|
|
a |
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
p2 + a2 |
||||||||||||
|
|
|
|
|
|
|||||||||
9 |
cos at |
|
|
|
|
|
p |
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
p2 + a2 |
||||||||||||
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
f(t) |
|
|
|
F (p) |
|||||
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
t sin at |
|
|
|
2ap |
|||||
|
|
|
|
|
|
|
|
|
|||
|
|
|
(p2 + a2)2 |
||||||||
|
|
|
|
|
|
||||||
11 |
t cos at |
|
|
|
p2 |
; a22 2 |
|
|
|||
|
|
2 |
|||||||||
|
|
|
|
|
|
(p |
+ a ) |
||||
12 |
|
sh at |
|
|
|
|
a |
||||
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
p2 ; a2 |
|||||||
|
|
|
|
|
|
|
|||||
13 |
|
ch at |
|
|
|
|
p |
||||
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
p2 ; a2 |
|||||||
|
|
|
|
|
|
|
|||||
14 |
e;at sin bt |
|
|
|
|
b |
|||||
|
|
|
|
|
|
|
|
||||
|
(p + a)2 + b2 |
||||||||||
|
|
|
|
|
|||||||
15 |
;at |
cos bt |
|
|
|
p + a |
|||||
e |
|
|
|
|
|
|
|
|
|
||
|
|
(p + a)2 + b2 |
|||||||||
|
|
|
|
|
|||||||
16 |
e;atsh bt |
|
|
|
|
b |
|||||
|
|
|
|
|
|
|
|
||||
|
(p + a)2 ; b2 |
||||||||||
|
|
|
|
|
|||||||
17 |
;at |
ch bt |
|
|
|
p + a |
|||||
e |
|
|
|
|
|
|
|
|
|
||
|
|
(p + a)2 ; b2 |
|||||||||
|
|
|
|
|
|||||||
18 |
|
(t) |
|
|
|
|
1 |
|
|
|
|
19 |
(t ; ) |
|
|
|
e;p |
9
zadanie N 1 |
lINEJNAQ ALGEBRA |
wARIANT 4 |
|
|
|
1. |
wY^ISLITX OPREDELITELI |
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
11 |
2 |
|
;5 |
|
2 |
|
|
|
|
|
15 |
|
4 |
7 |
1 |
|
|
a) |
|
0 2 |
|
3 |
|
;1 |
|
|
|
b) ;7 |
|
2 |
;3 |
1 |
|
|||
|
|
|
4 |
2 |
|
;1 |
|
0 |
|
|
|
|
|
32 |
|
;8 14 |
;6 |
|
|
|
|
|
3 |
3 |
|
4 |
|
1 |
|
|
|
|
|
;4 |
|
3 |
;3 ;1 |
|
|
2. |
nAJTI MATRICU h IZ URAWNENIQ. |
sDELATX PROWERKU |
|
||||||||||||||||
|
|
|
|
0 |
1 |
|
2 |
;3 |
1 |
X = |
0 |
1 |
;3 |
0 |
1 |
|
|
||
|
|
|
|
B |
3 |
|
2 |
|
4 |
C |
B |
10 |
|
2 |
7 |
C |
|
|
|
|
|
|
|
2 |
; |
1 |
;0 |
|
10 |
|
7 |
8 |
|
|
|||||
3. |
|
|
|
@ |
|
|
|
|
A |
|
@ |
|
|
|
|
A |
|
|
|
rE[ITX SISTEMY LINEJNYH URAWNENIJ: |
|
|
|
|
|
||||||||||||||
|
A) METODOM kRAMERA, |
|
|
|
|
|
b) |
MATRI^NYM METODOM |
|
|
8 2x + 5y ; 3z = 3 |
|
8 |
|
|
|
< |
3x ; 4y + z = 22 |
|
< |
|
|
a) > |
b) |
> |
|
4 |
|
> |
x + 3y + 5z = ;6 |
|
> |
|
. |
: |
|
|
: |
|
rE[ITX SISTEMY METODOM gAUSSA |
|
x + 4y + 3z = ;3 7y + 11z = 1 ;x + 3y + 7z = 2
|
|
8 |
x1 |
+x2 +2x3 +3x4 |
= 1 |
|
|
|||||||
|
|
a) > |
2x1 +3x2 |
|
x3 |
|
x4 |
= 6 |
|
|
||||
|
|
3x1 |
; |
x2 |
;x3 |
;2x4 |
= |
;4 |
|
|
||||
|
|
< |
x1 |
|
; |
; |
|
; |
|
|
|
|||
|
|
> |
+2x2 |
+3x3 |
;x4 |
= ;4 |
|
|
||||||
|
|
: |
2x1 |
+x2 |
;x3 |
;x4 |
+x5 |
= 1 |
||||||
|
|
b) 8 |
x1 |
;x2 +x3 |
+x4 |
;2x5 |
= 0 |
|||||||
|
|
< |
|
+3x2 |
; |
3x3 |
; |
3x4 |
+4x5 |
= 2 |
||||
|
|
> 3x1 |
|
|
||||||||||
|
|
> 4x1 |
+5x2 ;5x3 ;5x4 +7x5 |
= 3 |
||||||||||
|
|
: |
x1 |
;2x2 +x3 |
+x4 |
;x5 |
= 0 |
|
||||||
|
|
8 |
x1 +7x2 |
|
5x3 |
|
5x4 +5x5 |
= 0 |
|
|||||
|
|
< |
|
|
|
; |
; |
+x5 |
= 0 |
|
||||
|
|
c) > 2x1 |
+x2 ; x3 |
; x4 |
|
|||||||||
5 |
|
> 3x1 |
;x2 ;2x3 +x4 |
;x5 |
= 0 |
|
||||||||
|
. |
: |
|
|
|
|
|
|
|
|
|
|
|
|
|
nAJTI SOBSTWENNYE ZNA^ENIQ I SOBSTWENNYE WEKTORY MATRIC |
|||||||||||||
|
|
a) A = 0 |
31 ;57 1 |
|
b) B = 0 |
03 ;21 |
;11 1 |
|||||||
|
|
|
@ ; |
|
|
A |
|
|
|
B |
0 |
; |
1 |
2 C |
|
|
|
|
|
|
|
10 |
|
|
@ |
|
|
A |
zadanie N 2 |
wEKTORNAQ ALGEBRA |
wARIANT 4 |
|
|||||
1. dANA RAWNOBEDRENNAQ TRAPECIQ ABCD W KOTOROJ j AB j= 5 |
- |
|||||||
j DC j= 3 = 6BAD = 60 m~ { |
EDINI^NYJ WEKTOR W NAPRAWLE |
|||||||
|
|
|
|
|
|
|||
NII OSNOWANIQ AB |
~n { EDINI^NYJ WEKTOR W NAPRAWLENII STORONY |
|||||||
|
|
|
|
;! ;! ;! |
;! |
|
|
|
D: rAZLOVITX WEKTORY STORON |
AB BC CD |
DA |
I WEKTORY |
|||||
DIAGONALEJ TRAPECII |
;!AC I ;!BD |
PO WEKTORAM |
m~ I |
~n. |
|
2. oPREDELITX KOORDINATY TO^KI C, LEVA]EJ NA PRQMOJ, PROHO- DQ]EJ ^EREZ TO^KI A I B, ESLI A(2 ;3 ;1) B(3 ;2 4) I
jACj : jCBj = 3 : 1
3. w TREUGOLXNIKE S WER[INAMI A(;1 2 5) B(3 ;1 5) C(2 ;2 0): nAJTI: a) WEKTOR MEDIANY AM,
b)WEKTOR WYSOTY BD,
c)L@BOJ PO MODUL@ WEKTOR BISSEKTRISY UGLA C:
4. dANY TRI WER[INY PARALLELOGRAMMA ABCD:
A(3 4 5) B(4 6 8) C(0 1 ;2): nAJTI: a) KOORDINATY ^ETWERTOJ WER[INY D,
b) DLINU WYSOTY, OPU]ENNOJ NA STORONU AB
c) KOSINUS OSTROGO UGLA MEVDU DIAGONALQMI AC I BD.
5 |
|
~ |
|
. pARALLELOGRAMM POSTROEN NA WEKTORAH ~a = p~ ; 2q~ b = 3p~ + 2q~, |
|
GDE j p~ j= 2 j q~ j= p2 (p~^q~) = 3 =4. oPREDELITX: |
||
|
A) |
KOSINUS UGLA MEVDU DIAGONALQMI |
|
b) |
DLINU WYSOTY, OPU]ENNOJ NA STORONU ~a. |
6. nAJTI EDINI^NYJ WEKTOR ~e, KOTORYJ ODNOWREMENNO PERPENDIKU- |
|
~ |
~ |
LQREN WEKTORAM ~a = f4 ;4 16g I b = f3 0 1g, ESLI (~e |
^ i) =2. |
7. w PIRAMIDE ABCD S WER[INAMI W TO^KAH |
|
A(1 1 2) (;1 1 3) (2 ;2 4) D(;1 0 ;2) |
|
NAJTI OB_EM I DLINU WYSOTY, OPU]ENNOJ NA GRANX . |
|
8. dOKAZATX, ^TO WEKTORY p~ = f2 1 0g q~ = f1 0 1g |
~r = f4 2 1g |
OBRAZU@T BAZIS I NAJTI RAZLOVENIE WEKTORA ~x = f3 1 3g W \TOM BAZISE.
11

zadanie N3 |
wARIANT 4 |
aNALITI^ESKAQ GEOMETRIQ NA PLOSKOSTI |
1. sOSTAWITX URAWNENIQ PRQMYH, PROHODQ]IH ^EREZ TO^KU M(3 ;3): |
|
a) PARALLELXNO PRQMOJ x + 2 = y ; 1 |
|
3 |
;2 |
b) PERPENDIKULQRNO PRQMOJ 8 x = 2t + 7 |
|
|
< y = ;3t |
c) POD UGLOM 450 K PRQMOJ x + 5y + 10 = 0 |
|
|
: |
2. dANY WER[INY TREUGOLXNIKA |
A(8 0) B(;4 ;5) C(;8 ;2): |
sOSTAWITX: a) URAWNENIE STORONY AC,
b)URAWNENIE MEDIANY wm,
c)URAWNENIE WYSOTY sH I NAJTI EE DLINU.
3. dANY DWE PRQMYE |
|
l1 : 2x + 3y = 0 l2 : 8 x = 3t ; 9 |
|
|
nAJTI: |
||||||||||
|
|
|
|
|
|
|
|
|
< y = ;5t + 2 |
|
|
|
|||
a) TO^KU PERESE^ENIQ PRQMYH, |
|
: |
|
|
|
|
|
|
|||||||
b) KOSINUS UGLA MEVDU PRQMYMI, |
|
|
|
|
|
|
|||||||||
c) SOSTAWITX URAWNENIQ BISSEKTRIS UGLOW MEVDU PRQMYMI. |
|||||||||||||||
4. pRIWESTI URAWNENIQ LINIJ K KANONI^ESKOMU WIDU I POSTROITX: |
|||||||||||||||
1) x2 + y2 ; 2x ; |
4y |
; 35 = 0 |
|
2) x2 + 2x + 4y2 + 12y ; 7 = 0 |
|||||||||||
3) y = 1 ; p |
|
|
|
|
4) y2 + 4y = 24x ; |
|
|
||||||||
4 + x2 |
|
|
76 |
|
|||||||||||
5) 2x2 + 5xy + 2y2 ; 6x ; 3y = 8 6) 3x2 |
; 4xy + 3y2 + 4x + 4y + 1 = 0 |
||||||||||||||
5. sOSTAWITX URAWNENIE I POSTROITX LINI@, |
DLQ KAVDOJ TO^KI KO- |
||||||||||||||
TOROJ OTNO[ENIE RASSTOQNIQ DO NA^ALA KOORDINAT K RASSTOQNI@ DO |
|||||||||||||||
PRQMOJ 3x + 16 = 0 RAWNO 0 6: |
|
|
|
|
|
|
|
|
|||||||
6. pOSTROITX LINII, ZADANNYE W POLQRNYH KOORDINATAH: |
|
|
1 |
|
|||||||||||
|
1) |
= 1 ; cos 2' |
2) |
= 2 + ' |
3) = |
|
|
|
: |
||||||
|
|
|
|
|
|||||||||||
|
2 |
; |
2 sin ' |
||||||||||||
7. pOSTROITX LINII, ZADANNYE PARAMETRI^ESKIMI URAWNENIQMI: |
|||||||||||||||
1) 8 x = 2 ; 3 sin t |
2) |
8 x = t sin t |
|
|
|
|
|
|
|||||||
|
< y = 3 ; 2 cos t |
|
< y = t cos t |
|
|
|
|
|
|
||||||
|
: |
|
|
|
|
|
: |
|
|
|
|
|
|
||
8. pOSTROITX FIGURU, OGRANI^ENNU@ LINIQMI |
|
|
|
|
|
|
|||||||||
1) |
|
y |
= 1=x x = 1 |
2) |
|
x = et |
|
|
|
|
|
|
|||
|
x |
= 2 y = 0: |
|
|
|
y = 2et ; e2t y = 0: |
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
12