
ИДЗ_1 / VAR-15
.PDF
zadanie N 14 |
wARIANT 15 |
dIFFERENCIALXNYE URAWNENIQ I SISTEMY
1.nAJTI OB]IE RE[ENIQ URAWNENIJ
1)2y0 + cos x = y1 cos x(1 + sin x):
2)3ex tg y dx + (1 ; ex) cos;2 y dy = 0:
3)xy2dx + y(x2 + y2)dy = 0:
4)2y2 dx + (x + e1=y) dy = 0:
|
0 |
1 |
|
3y2 |
1 dx |
2y |
|
||
5) |
|
|
+ |
|
; x |
|
dy = 0: |
||
|
2 |
4 |
3 |
||||||
|
@x |
|
|
x |
A |
|
|
||
6) |
y0 |
; sin 2x = ;y cos x: |
2. nAJTI ^ASTNYE RE[ENIQ URAWNENIJ
1) |
xy0 + y = y2 ln x |
|
y(1) = 1: |
||||
2) |
(5x4y4 + 28x6) dx + 4x5y3 dy = 0 y(1=2) = 2: |
||||||
3) |
y0(1 |
; |
x2) |
; |
cos2 y = 0 |
y( =2) = =4: |
|
|
|
|
2 |
|
|
||
4) |
y0 ctg x ; y = 2 cos |
x ctg x |
y( =4) = =4: |
3. nAJTI RE[ENIQ URAWNENIJ WYS[EGO PORQDKA
1) y00 |
= 2 ; y: |
||
3) y00 |
; 2y0 ctg x = sin3 x: |
||
5) y00 |
|
ex |
|
; y = |
|
: |
|
ex + 1 |
7) y00 + 36y = 36 + 66x ; 36x3: 9) y000 + 3y00 + 2y0 = 3x2 + 2x
11)(1 ; x)2 y00 ; 4(1 ; x) y0 + 6y = 0
13)x ; 3x + 2x = (34 ; 12t) e;t
14)x ; x = 2 cos t ; 3 sin t
4.nAJTI RE[ENIQ LINEJNYH SISTEM
2) (y00)2 = 4(y0 ; 1) |
y(0) = 0 |
: |
|||
y0(0) = 2 |
|||||
4) y00 |
= (2x + 5) e3x: |
|
|
|
|
6) y00 |
1 |
|
|
|
|
+ y = |
sin 2x p |
|
: |
|
|
sin 2x |
|
8) y00 ; 2y0 + 5y = 10e;x cos 2x: 10) y000 + 4y00 + 4y0 = (9x + 15) ex:
12) x2 |
y00 ; 2x y0 + 2y = 2x3 ; x: |
||
x(0) |
= |
0 |
x(0) = 1: |
x(0) |
= |
;2 |
x(0) = 2: |
8 x = ;3x + y
1) < y = 4x ; 6y
:
8 x = x + 4y
3) < y = ;x + 5y
:
: |
2) |
8 x = ;2x ; 4y |
|
x(0) |
= ;2 |
|
|
|
< y = 5x + 2y |
|
|
y(0) = 0: |
|
: |
4) |
:8 x = 4x ; 3y + 5t + 8 : |
|
|||
|
|
< y = 3x ; 2y |
+ cos t |
|
||
|
|
: |
|
|
|
|
|
|
23 |
|
|
|
|

zadanie N 15 |
wARIANT 15 |
~ISLOWYE I FUNKCIONALXNYE RQDY.
1. nAJTI SUMMY ^ISLOWYH RQDOW
1) |
1 |
1 |
|
(;1)n |
|
2) |
1 |
|
9 |
|
|
3) |
1 |
1 ; n |
|
X |
@ |
|
|
A |
X |
9n2 |
|
; |
|
X |
|||||
|
|
|
|
|
+ 3n |
20 |
|
n(n + 1)(n + 3) |
|||||||
|
n=0 |
02n ; |
3n 1 |
|
n=1 |
|
|
n=1 |
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
2. iSSLEDOWATX RQDY NA SHODIMOSTX
|
1 |
|
n |
+ 1 |
|
|
|
|||
1) |
X |
|
p |
|
|
|
|
|
|
|
|
|
|
3 |
|
|
|
|
|||
|
4 |
|
|
|
|
|
|
|
||
|
n=2 n |
|
n |
|
; |
1 |
|
|||
|
1 |
nn |
|
|
|
|
|
|
||
3) |
X |
|
|
|
|
|
|
|
|
|
(n!)2 |
|
|
|
|
|
|||||
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
||||
|
n=1 |
|
|
|
1 n |
|
|
|||
|
1 |
n |
|
|
|
n |
||||
|
X |
n +; |
3! |
|
|
|
||||
5) |
|
3n |
||||||||
|
n=1 |
|
|
|
|
|
|
|
|
|
|
1 |
ln5(2n + 7) |
||||||||
7) |
X |
|
2n |
+ 7 |
|
|
|
|||
|
|
|
|
|
||||||
|
n=1 |
|
|
|
2) |
1 |
(;1)n cos |
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
||||||
X |
6n |
|
|
|
|
|
|
|
|
|||||
|
n=1 |
|
|
|
2n + 3 |
|
|
|
|
|
||||
4) |
1 |
(;1)n |
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
||||||
X |
72n 1 |
|
(5n2 |
; |
4) |
|
|
3n |
||||||
|
|
; |
|
|
|
|
|
|
|
|||||
|
n=1 |
|
|
|
|
|
|
|
|
|
|
|
||
6) |
n1=1(;1)n |
arctg |
p13 |
+n +n |
2 |
! |
|
|||||||
|
X |
(;1)n |
(en cos n) |
|
|
|
|
|
|
|||||
8) |
1 |
|
|
|
|
|
|
|||||||
|
X |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n=1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
3. nAJTI INTERWALY SHODIMOSTI FUNKCIONALXNYH RQDOW
|
|
1 |
|
n |
2n |
|
|
|
|
|
|
|
|
|
1 |
|
(x |
+ 3)n |
|
|
||||
|
1) |
X |
3 |
|
x |
|
|
|
|
|
2) |
|
X |
2n n! |
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||
|
|
n=1 |
|
|
|
|
|
|
|
|
|
|
n=1 |
|
|
|||||||||
|
|
1 |
n + 1 |
2 |
|
n |
|
|
|
|
|
|
1 |
|
|
|
|
1 |
|
|
|
|||
|
3) |
X |
|
3n (x ; 4x + 6) |
|
|
|
4) |
|
X |
lnn(x + 1=e) |
|||||||||||||
|
n=1 |
|
|
|
n=1 |
|||||||||||||||||||
4. nAJTI SUMMY FUNKCIONALXNYH RQDOW |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||
|
|
|
|
|
1 e;nx |
|
|
1 |
|
|
2 |
|
|
|
|
|
|
|
|
n |
|
|
||
|
|
1) |
|
X |
n |
2) |
X |
(2n + 8n + 5)x |
|
|
|
|
||||||||||||
|
|
|
|
n=1 |
|
|
n=0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
5. |
rAZLOVITX W RQD tEJLORA PO STEPENQM |
|
(x ; x0) |
FUNKCII |
||||||||||||||||||||
|
1) y = e;x=3 |
x0 = 6: |
|
2) |
y = |
sin 3x |
; cos 3x |
x0 = 0 |
||||||||||||||||
|
|
|
x |
|
||||||||||||||||||||
3) |
y = ln(1 ; x ; 6x2) x0 = 0 |
4) y = |
|
|
|
x + 3 |
|
|
x0 = 1: |
|||||||||||||||
|
|
|
|
|||||||||||||||||||||
x2 + 5x + 4 |
||||||||||||||||||||||||
6. |
wY^ISLITX INTEGRALY S TO^NOSTX@ DO 0,001 |
|
|
|
|
|
|
|
|
|||||||||||||||
|
|
|
|
0 5 |
|
|
|
|
|
|
|
0 2 |
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
Z |
arctg x2 dx |
|
|
|
|
|
|
Z |
p |
|
dx |
|
|
|||||||
|
|
1) |
|
|
|
|
|
2) |
|
1 ; x4 |
|
|
||||||||||||
|
|
|
|
0 |
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
24

zadanie N 16 |
wARIANT 15 |
rQDY fURXE. iNTEGRAL fURXE
1. zADANNU@ NA INTERWALE (;l l) FUNKCI@ RAZLOVITX W TRIGONOMET- RI^ESKIJ RQD fURXE. pOSTROITX GRAFIK SUMMY POLU^ENNOGO RQDA.
|
1) f(x) = x + 2 x 2 (; ) |
|
|
|
|
|||||||||
|
2) f(x) = j sin xj |
x 2 (; =2 =2) |
|
|
|
|
||||||||
|
3) f(x) = 8 |
2x |
|
; < x < 0 |
|
|
|
|
||||||
|
|
|
< |
0 0 x < |
|
|
|
|
|
|||||
2. fUNKCI@ f(x) = 8 1 |
|
: |
|
|
|
|
|
|
|
|
|
|
|
|
; x=2 0 < x < 1 RAZLOVITX W RQD fURXE |
||||||||||||||
|
< |
2 |
|
1 x < 2 |
|
|
|
|
|
|
||||
|
: |
|
|
|
|
|
|
(sin |
n x |
n = 1 2 ::: |
). pO- |
|||
PO ORTOGONALXNOJ SISTEME FUNKCIJ |
|
|
||||||||||||
STROITX GRAFIK SUMMY POLU^ENNOGO RQDA. |
2 |
|
|
1 |
|
|
||||||||
3. fUNKCI@ f(x) = 8 |
;x |
0 < x < 2 |
RAZLOVITX W RQD fURXE |
|||||||||||
|
< |
|
0 |
1 x < 3 |
|
|
|
|
|
|
||||
|
: |
|
|
|
n x |
|
n |
= 0 1 2 ::: |
|
). pOSTROITX |
||||
PO ORTOGONALXNOJ SISTEME (cos |
|
3 |
1 |
|||||||||||
GRAFIK SUMMY POLU^ENNOGO RQDA. |
|
|
|
|
|
|
|
|||||||
4. fUNKCI@ |
f(x) = e; |
2x |
;1 < x < 1 |
PREDSTAWITX TRIGONOMET |
- |
|||||||||
|
||||||||||||||
|
|
|
|
|
|
|
|
|
RI^ESKIM RQDOM fURXE W KOMPLEKSNOJ FORME. zAPISATX:
a)SPEKTRALXNU@ FUNKCI@ S(!n),
b)AMPLITUDNYJ SPEKTR A(!n) = jS(!n)j
c)FAZOWYJ SPEKTR '(!n) = arg S(!n).
5. fUNKCI@ |
f(x) = 8 x2 |
1 x 2 |
|
PREDSTAWITX INTEGRALOM |
||
|
|
< 0 x < 1 x > 2 |
|
|||
fURXE. |
: |
|
|
|
|
|
6. nAJTI PREOBRAZOWANIE fURXE |
F(!) FUNKCII |
|||||
|
|
f(x) = 8 sin x 0 |
x 1 |
|||
|
|
< |
0 |
x < 0 |
x > 1 |
|
7. |
|
: |
|
|
Fs(!) FUNKCII |
|
|
nAJTI SINUS PREOBRAZOWANIE fURXE |
|||||
|
|
f(x) = 8 |
1 ; x2 0 < x 1 |
|||
|
|
< |
0 |
x > 1 |
|
|
|
|
: |
|
25 |
|
|

zadanie N 17 |
wARIANT 15 |
kOMPLEKSNYE ^ISLA I FUNKCII
1. |
dANY ^ISLA |
z1 = 7 |
; 4i |
|
z2 = ;1 ; 3i: |
|
|
wY^ISLITX |
: |
|||||||
|
|
|
|
|
|
|
|
|
1 ; z2 |
|
|
z1 z2 |
|
|
||
1) |
2z1 |
; |
3z2 |
2) (z2)2 |
3) |
|
z |
4) |
|
|||||||
|
|
|
|
|||||||||||||
|
|
|
|
|
|
|
|
z2 |
|
|
z1 + z2 |
|
||||
5) |
q |
|
6) |
ln z1 |
7) |
cos z2 |
8) |
sh z1: |
|
|||||||
z1z22 |
|
|||||||||||||||
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rEZULXTATY WY^ISLENIJ PREDSTAWITX W POKAZATELXNOJ I ALGEBRAI- ^ESKOJ FORMAH.
2. oPREDELITX I POSTROITX NA KOMPLEKSNOJ PLOSKOSTI SEMEJSTWA LINIJ, ZADANNYH URAWNENIQMI
|
1) jz ; ij = C |
2) Im (ln z) = |
C |
: |
|
z |
|||
|
|
|
j j |
|
3. |
rE[ITX URAWNENIQ |
|
|
|
|
1) sin z = i |
2) e2z + 2ez ; 3 = 0: |
||
4. |
nA KOMPLEKSNOJ PLOSKOSTI ZA[TRIHOWATX OBLASTI, W KOTORYH PRI |
OTOBRAVENII FUNKCIEJ f(z) = 3i ln(2i ; 1 + z) IMEET MESTO
a)SVATIE k 1
b)POWOROT NA UGOL 0 90o.
5. |
dOKAZATX, ^TO FUNKCIQ v(x : y) = y3 ;3x2y ;6xy MOVET SLUVITX |
||||||
MNIMOJ ^ASTX@ ANALITI^ESKOJ FUNKCII f(z) = u + iv I NAJTI EE. |
|||||||
6. |
wY^ISLITX INTEGRALY |
|
|||||
|
1) |
Z ( |
|
)2 dz GDE L : j z j = p |
|
|
Im z > 0 |
|
|
2 |
|||||
|
z |
||||||
|
|
(L) |
|
||||
|
2) |
Z Im z dz GDE L : OTREZOK [1 |
i]: |
||||
|
|
(L) |
|
7. wY^ISLITX, ISPOLXZUQ INTEGRALXNU@ FORMULU kO[I
I |
ch z dz |
|
GDE L : |
|
|||
(z2 + 1)2 |
|||
(L) |
|
|
|
|
|
|
26 |
8 1) jz ; 3ij = 3
>
< 2) jz + 3ij = 3
> 3) jzj = 3:
:

zadanie N 18 |
wARIANT 15 |
wY^ETY I IH PRILOVENIQ
1. iSSLEDOWATX NA ABSOL@TNU@ I USLOWNU@ SHODIMOSTX RQD
|
1 1 |
|
|
|
n + 3 |
|
|
|||
|
X |
|
|
|
arctg |
|
n3 |
: |
|
|
|
3 |
|
|
|
|
|||||
|
|
|
|
|
|
|||||
|
n=1 |
pn |
|
|
|
|
|
|||
2. nAJTI I POSTROITX OBLASTX SHODIMOSTI RQDA |
|
|||||||||
1 |
(z + 1 + i)n |
1 |
2n(n + 1) |
|
||||||
X |
|
|
|
+ |
X |
|
|
: |
||
|
|
|
|
|
||||||
|
5n(1 + in) |
|
|
(z + 1 + i)n |
||||||
|
|
n=1 |
|
|||||||
n=0 |
|
|
|
|
|
|
|
3. nAJTI WSE LORANOWSKIE RAZLOVENIQ DANNOJ FUNKCII PO STEPENQM
z ; z0 |
15z ; 450 |
|
|
z |
|
|
A) |
z0 = 0 |
B) z exp |
z0 = 5: |
|||
2z3 + 15z2 ; 225z |
z ; 5 |
|||||
|
|
|
|
4.dLQ FUNKCII ; exp(;1=z2) NAJTI IZOLIROWANNYE OSOBYE TO^KI I OPREDELITX IH TIP.
5.dLQ DANNYH FUNKCIJ NAJTI WY^ETY W UKAZANNYH OSOBYH TO^KAH
A) |
cos z ; 1 |
|
z |
= 0 |
|
|
|
|||||||
|
|
z sin z |
|
|
|
|
|
|
|
|
|
|||
W) |
|
(z + 1)2 sin |
|
1 |
|
|
|
|
|
|||||
|
|
|
|
|
|
|
||||||||
(z + 1)2 |
|
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|||||
;1 |
4z + 24 |
|
|
cos |
|
|
z |
, |
||||||
D) |
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|||||||
|
32z2 + 4z |
; 1 |
z ; 5 |
|||||||||||
|
z = 1 |
|
|
|
|
|
|
|
|
|
|
|
||
6. wY^ISLITX INTEGRALY |
|
|
|
|||||||||||
A) |
|
Z |
|
|
exp z |
|
|
|
||||||
|
|
|
dz |
|
||||||||||
|
z4 + 2z2 + 1 |
|
||||||||||||
|
jz;ij=1 |
|
|
|
|
|
|
|
|
|
|
|
||
|
|
1 x4 + 1 |
|
|
|
|
|
|
|
|
|
|||
W) |
|
Z x6 |
+ 1dx |
|
|
|
|
|
|
|
||||
|
;1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
1 |
|
|
|
|
|
|
|
|
|
||
D) |
Z p |
|
|
|
|
4dt |
|
|
|
|||||
|
sin t |
|
|
|
|
|
||||||||
15 |
; |
|
|
|
||||||||||
|
0 |
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
z =
B)
G)
E)
B) |
|
|
exp z |
|
|
|
|
z = i |
|
|
||||||||
|
(z ; i)2 |
|
|
|
||||||||||||||
|
|
|
2 |
|
|
|
|
|
2 |
|
|
|
|
|||||
G) |
|
|
|
sin z |
|
; z |
|
|
|
z = 0 |
||||||||
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
(exp z3 ; 1 ; z3)z |
|
|
|||||||||||||||
E) (z + 1)2 exp |
2 ; i, |
|
|
|||||||||||||||
z = 1. |
|
|
|
|
|
|
|
z |
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
Z |
|
z sin |
|
|
z |
|
dz |
||||||||
|
|
|
z |
; |
1 |
|||||||||||||
jz;1j=1=2 |
|
|
|
|
|
|
|
|
|
|
||||||||
1 |
(x + 1) sin 2x |
|
|
|
|
|||||||||||||
Z |
|
|
x2 |
+ 2x |
+ 2 |
dx |
|
|
||||||||||
;1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
Z |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
(p |
|
+ 2p |
|
cos t)2 |
dt. |
|||||||||||||
13 |
3 |
|||||||||||||||||
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27

zadanie 19 |
wARIANT 15 |
oPERACIONNYJ METOD
1. nAJTI IZOBRAVENIQ SLEDU@]IH FUNKCIJ
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
t |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3) f(t) = Z e d : |
|
|
|
|||||||
1) |
f(t) = 2 |
(cht sin t + sht cos t) : |
|
|
|
||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
2) |
f(t) = t |
2 |
sin 5t: |
|
|
|
|
|
|
|
|
4) |
8 |
0 t |
|
t |
< |
|
0 |
||||
|
|
|
|
|
|
|
|
|
f(t) = > e; |
|
0 |
t |
< 1 |
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
< |
0 |
|
|
t |
2: |
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
> |
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
: |
|
|
|
|
|
|
|
2. nAJTI ORIGINALY FUNKCIJ PO ZADANNYM IZOBRAVENIQM |
|
|
|||||||||||||||||||||
|
|
1) |
F (p) = |
|
|
p ; |
1 |
|
|
|
|
: |
|
2) F (p) = |
|
|
e;p=3 |
: |
|
||||
|
|
|
|
|
|
|
|
|
|
p(p2 ; 9) |
|
||||||||||||
|
|
|
|
|
|
(p2 + 2)(p2 |
+ 3) |
|
|
|
|
|
|
||||||||||
3. |
nAJTI RE[ENIE ZADA^I kO[I OPERACIONNYM METODOM |
|
|
|
|||||||||||||||||||
|
|
1) |
x + 15x = ;5et + 3t + 2 |
|
x(0) = 1: |
|
|
|
|
|
|
|
|||||||||||
|
|
2) |
x ; 6x + 5x = 3 sin 2t |
|
|
|
|
x(0) = 0 |
x(0) = ;3: |
||||||||||||||
|
|
3) 4x + 4x + x = t e;3t |
|
|
|
|
x(0) = 0 |
x(0) = 3: |
|
|
|||||||||||||
|
|
4) |
x + 25x = 2t2 + 4t |
|
|
|
|
|
|
x(0) = 0 |
x(0) = 0: |
|
|
||||||||||
4. |
rE[ITX URAWNENIQ, ISPOLXZUQ FORMULU d@AMELQ |
|
|
|
|
||||||||||||||||||
|
1) |
x + 6x + 9x = |
e;3t |
|
|
|
|
|
x(0) = 0 x(0) = 0: |
|
|
|
|||||||||||
|
(1 + 3t)2 |
|
|
|
|
|
|
||||||||||||||||
|
|
|
|
|
|
8 |
0 |
t |
< |
|
0 |
|
|
|
|
|
|
|
|
|
|||
|
2) |
4x + 25x = |
> |
;2 |
0 |
t |
|
< |
1 |
x(0) = 0 |
x(0) = 0: |
||||||||||||
|
|
|
|
|
|
3 |
1 |
|
t |
|
< |
3 |
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
< |
0 |
t |
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
> |
3 |
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5. nAJTI RE[ENIE SISTEM OPERACIONNYM METODOM |
|
|
|
|
|
|
|||||||||||||||||
1) |
8 x = 6x |
; 8y |
|
|
x(0) = 0 |
|
|
2) |
8 x = 5x + y |
|
|
|
x(0) = ;1 |
||||||||||
|
< y = |
;x + 4y |
|
|
y(0) = 3: |
|
|
|
< y = ;10x + 7y |
y(0) = 0: |
|||||||||||||
|
: |
|
|
|
|
|
|
|
|
|
|
|
|
|
: |
|
|
|
|
|
|
|
|
28
zadanie 20 |
tEORIQ WEROQTNOSTEJ |
wARIANT 15 |
1. zA KRUGLYJ STOL SLU^AJNYM OBRAZOM RASSAVIWA@TSQ 10 ^ELOWEK. kAKOWA WEROQTNOSTX TOGO, ^TO DWA OPREDELENNYH ^ELOWEKA OKAVUTSQ RQDOM ?
2.wEROQTNOSTX POQWLENIQ SOBYTIQ W KAVDOM IZ 2000 NEZAWISIMYH ISPYTANIJ RAWNA 0.7. nAJTI WEROQTNOSTX TOGO, ^TO SOBYTIE POQWITSQ
a)NE MENEE 1400 I NE BOLEE 1500 RAZ
b)NE MENEE 1470 RAZ.
3.pREDPOLOVIM, ^TO ODNA MONETA IZ 10 000 000 IMEET GERB S DWUH STORON, OSTALXNYE MONETY - OBY^NYE. nAUGAD WYBRANNAQ MONETA BRO- SAETSQ 10 RAZ, PRI^EM WO WSEH BROSANIQH ONA WYPALA GERBOM KWERHU. kAKOWA WEROQTNOSTX TOGO, ^TO BYLA WYBRANA MONETA S DWUMQ GERBAMI
?
4. mIMO POSTA gai W SREDNEM ZA SUTKI PROEZVAET 3000 AWTOMOBILEJ. kAKOWA WEROQTNOSTX TOGO, ^TO W BLIVAJ[U@ MINUTU IH PROJDET:
A) ROWNO DWE b) NE BOLEE TREH ?
5. dETALX, IZGOTOWLENNAQ AWTOMATOM, S^ITAETSQ GODNOJ, ESLI OT- KLONENIE EE KONTROLIRUEMOGO RAZMERA OT NOMINALA NE PREWY[AET 10 MM. sLU^AJNYE OTKLONENIQ KONTROLIRUEMOGO RAZMERA OT NOMI- NALA POD^INQ@TSQ NORMALXNOMU ZAKONU S MATEMATI^ESKIM OVIDANI- EM a = 0 I SREDNIM KWADRATI^ESKIM OTKLONENIEM sKOLXKO PROCENTOW GODNYH DETALEJ IZGOTAWLIWAET AWTOMAT? sKOLXKO NEOBHO- DIMO IZGOTOWITX DETALEJ, ^TOBY S WEROQTNOSTX@ NE MENEE 0.95 SREDI NIH OKAZALASX HOTQ BY ODNA BRAKOWANNAQ DETALX?
6. zADANA PLOTNOSTX RASPREDELENIQ NEPRERYWNOJ SLU^AJNOJ
|
8 |
0 |
x < 1 |
WELI^INY |
f(x) = >< a(x ; 1) (x ; 5) |
1 x 5 |
1)NAJTI ZNA^ENIE PARAMETRA>: "a "
2)NAJTI FUNKCI@ RASPREDELENIQ F (x)
3)POSTROITX GRAFIKI FUNKCIJ F(x) I f(x)
4)WY^ISLITX MATEMATI^ESKOE OVIDANIE M(X)
5)WY^ISLITX DISPERSI@ D(X)
6)WY^ISLITX WEROQTNOSTX P (2 < X < 4:5):x > 50
29

zadanie 21 |
wARIANT 15 |
mATEMATI^ESKAQ STATISTIKA
1. fIKSIRUETSQ SLU^AJNAQ WELI^INA X | KOLI^ESTWO PROMAHOW PRI STRELXBE PO MI[ENI W SERIQH PO 10 WYSTRELOW W KAVDOJ. pROWEDENO 39 SERIJ ISPYTANIJ, REZULXTATY KOTORYH OKAZALISX SLEDU@]IMI:
X = 8 |
4 |
5 |
7 |
5 |
7 |
2 |
6 |
1 |
3 |
6 |
4 |
6 |
3 |
4 |
8 |
< |
6 |
2 |
1 |
7 |
5 |
2 |
5 |
1 |
3 |
5 |
5 |
3 |
4 |
7 |
3 |
sKOLXKO, W SREDNEM: |
, NUVNO PROIZWESTI WYSTRELOW PO MI[ENI, ^TOBY |
IMETX 10 POPADANIJ?
2. w REZULXTATE PROWEDENNYH SLU^AJNYH IZMERENIJ ABSOL@TNYH ZNA^ENIJ TOKA (I a) W \LEKTRI^ESKOJ CEPI POLU^ENY SLEDU@]IE ZNA- ^ENIQ:
I = 8 |
3 23 1 95 1 27 3 02 3 23 4 28 4 41 4 78 4:76 4 15 |
< |
0 73 3 15 2 33 2 07 1 58 1 32 1 24 0 98 0 44 0 05 |
: , - oPREDELITX SREDN@@ MO]NOSTX TOKA W CEPI ESLI EE AKTIWNOE SOPRO
TIWLENIE SOSTAWLQET 5 oM.
3. pO USLOWIQM ZADA^ 1 I 2
A) SOSTAWITX STATISTI^ESKU@ TABLICU RASPREDELENIQ OTNOSITELX- NYH ^ASTOT SLU^AJNOJ WELI^INY,
b) POSTROITX POLIGON I GISTOGRAMMU RASPREDELENIQ.
4. dANA STATISTI^ESKAQ TABLICA RASPREDELENIQ ^ASTOT W SLU^AJ- NOJ WYBORKE.
a)pOSTROITX POLIGON I GISTOGRAMMU RASPREDELENIQ.
b)nAJTI WELI^INY x I s2 WYBORKI.
c)zAPISATX TEORETI^ESKIJ ZAKON RASPREDELENIQ. nAJTI TEORETI- ^ESKIE ZNA^ENIQ WEROQTNOSTEJ I SRAWNITX IH S WELI^INAMI OTNOSI- TELXNYH ^ASTOT.
d)iSPOLXZOWATX KRITERIJ pIRSONA DLQ USTANOWLENIQ PRAWDOPO- DOBNOSTI WYBRANNOJ GIPOTEZY O ZAKONE RASPREDELENIQ.
1) |
xi |
{1,2 |
{1,0 |
{0,8 |
{0,6 |
{0,4 |
{0,2 |
0 |
0,2 |
0,4 |
0,6 |
|
ni |
6 |
7 |
11 |
10 |
12 |
12 |
14 |
11 |
8 |
9 |
||
|
(ISPOLXZOWATX ZAKON RAWNOMERNOGO RASPREDELENIQ)
30

2) |
|
xi |
0 1 2 3 4 5 6 7 8 9 |
||||||||||
|
ni |
3 |
5 |
13 |
18 |
27 |
20 6 |
4 |
|
3 1 |
|||
(ISPOLXZOWATX ZAKON RASPREDELENIQ pUASSONA) |
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3) |
|
xi |
{5 |
{4 |
{3 |
{2 |
{1 |
0 |
1 |
2 |
|
|
|
|
ni |
5 |
10 |
22 |
26 |
18 |
10 |
6 |
3 |
|
||
|
|
|
|
|
(ISPOLXZOWATX ZAKON NORMALXNOGO RASPREDELENIQ)
5. dLQ NORMALXNO RASPREDELENNOJ SLU^AJNOJ WELI^INY (TABL.3, ZA- DA^A 4) OPREDELITX DOWERITELXNYJ INTERWAL, W KOTORYJ S NADEVNOS- TX@ p = 0 95 POPADAET ISTINNOE ZNA^ENIE (MATEMATI^ESKOE OVIDA- NIE) SLU^AJNOJ WELI^INY.
6. nAJTI DOWERITELXNYJ INTERWAL DLQ OCENKI MATEMATI^ESKOGO OVIDANIQ a NORMALXNOGO RASPREDELENIQ S NADEVNOSTX@ 0:95 ZNAQ WYBORO^NU@ SREDN@@ x = 75:13 OB_EM WYBORKI n = 100 NEKWADRATI^ESKOE OTKLONENIE = 10:
7. pO DANNYM KORRELQCIONNOJ TABLICY ZNA^ENIJ xi yi SLU^AJNYH WELI^IN X I Y
a)NANESTI TO^KI (xi yi) NA KOORDINATNU@ PLOSKOSTX, I SOEDINITX IH LOMANOJ,
b)PODOBRATX FUNKCIONALXNU@ ZAWISIMOSTX y = f(x), NAIBOLEE HO- RO[O OPISYWA@]U@ DANNU@ KORRELQCIONNU@. lINEARIZOWATX, ESLI TREBUETSQ, \TU ZAWISIMOSTX, ISPOLXZUQ NOWYE PEREMENNYE,
c)SOSTAWITX URAWNENIE LINII REGRESSII I OPREDELITX KO\FFICI- ENT KORRELQCII. oCENITX TESNOTU SWQZI MEVDU WELI^INAMI X I Y .
1) |
|
|
xi |
|
{3,6 |
{3,0 |
{2,4 |
{1,8 |
{1,2 |
{0,6 |
0 |
0,6 |
||
|
|
yi |
|
{10,5 |
{9,6 |
{8,1 |
{7,2 |
{6,3 |
{4,1 |
{3,5 |
{2,5 |
|||
|
|
|
|
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2) |
xi |
|
1 |
4 |
7 |
10 |
13 |
16 |
19 |
22 |
|
||
|
yi |
|
0,13 |
0,52 |
0,85 |
1,17 |
1,36 |
1,45 1,63 1,71 |
|
|||||
|
|
|
|
|
31