Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

mathanaliz

.pdf
Скачиваний:
12
Добавлен:
11.05.2015
Размер:
9.53 Mб
Скачать

Фиксируем произвольное ε > 0.

В силу свойства монотонности показательной функции справедливы неравенства

 

1

 

[x]

 

1 x

 

1 [x]+1

,

1 +

 

 

 

< 1 +

 

 

< 1 +

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[x] + 1

 

 

x

 

 

[x]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(3.5)

где [x] — целая часть x, т.е. наибольшее целое число не превосходящее x.

First Prev Next Last Go Back Full Screen Close Quit

Отсюда следует, что

lim 1 + n+11

 

n

= e =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

24

 

 

 

 

 

 

 

1

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N1 = N1(ε) такое, что

n > N1

:

 

1 +

 

 

 

 

 

 

 

 

 

e < ε

 

 

 

n+1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n+1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

24

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

lim 1 +

n

 

 

 

 

= e

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

!

 

 

 

 

 

 

1

n+1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N2 = N2(ε) такое, что

 

n > N2

:

 

1 +

 

n

 

 

 

 

 

 

e < ε

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 +

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

< e + ε

 

 

 

 

 

 

 

 

 

 

 

n+1

 

n (n > N = max{N1, N2}) = e

 

ε <

 

 

1 +

1

 

n+1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(3.6)

Если x > 1 + N, то [x] > N. Положим δ = N = max{N1, N2}. Тогда,

учитывая (3.5) и (3.6), получаем, что

 

e

< ε .

 

x (x > δ) =

1 + 1 x

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Из выделенного синим цветом следует, по определению 61, что

lim

1 +

1

x

= e.

 

x→+∞

 

x

 

First Prev Next Last Go Back Full Screen Close Quit

Пример 48.

Показать, что x lim

1 + x

 

= e.

→−∞

 

1

x

 

 

 

 

 

 

First Prev Next Last Go Back Full Screen Close Quit

Решение.

 

 

lim

1 +

1

x

 

x→−∞

 

x

= e

60

(xn) , xn

 

:

1 +

1 xn

e .

 

 

→ −∞

 

 

xn

 

Фиксируем произвольную последовательность (xn) , xn → −∞. Обозначим yn = −xn, zn = yn − 1.

Очевидно, что yn → +∞, zn → +∞. Проведём эквивалентные преобразования

1 +

1

xn

=

1 +

1

−yn

=

 

yn

 

yn =

 

 

 

 

 

 

xn

 

 

 

 

 

−yn

 

 

 

yn − 1

 

 

 

 

 

 

 

= 1 +

 

 

1

yn−1

1 +

1

 

=

1 +

1

zn 1 +

1

 

. (3.7)

 

 

 

 

 

 

 

 

 

 

yn − 1

·

 

yn − 1

 

 

zn ·

zn

 

First Prev Next Last Go Back Full Screen Close Quit

Тогда

 

 

Пример 47

 

 

62

 

 

 

 

 

 

 

 

zn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z

 

=

 

1 +

1

 

 

 

e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

zn

 

 

 

 

 

 

13

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

lim

 

 

1 +

 

 

 

= e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

→ ∞1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 +

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 zn

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

1 +

 

 

 

 

·

1 +

 

e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

zn

 

 

 

zn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Отсюда, учитывая (3.7), получим

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 xn

 

e.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 +

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xn

Из выделенного синим цветом

следует, по

определению 60, что x lim

 

1 x

= e.

1 + x

→−∞

 

 

First Prev Next Last Go Back Full Screen Close Quit

Пример 49.

Показать, что xlim

1 + x

 

= e.

 

 

 

 

 

→∞

 

1

x

 

Решение.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

lim

1 +

1

x

= e

57

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x→∞

 

 

x

 

 

 

x ( x > δ) =

1 + 1 x

 

 

e

< ε .

ε > 0

 

δ > 0 такое, что

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

| |

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

First Prev Next Last Go Back Full Screen Close Quit

Фиксируем произвольное ε > 0.

 

 

 

 

 

 

 

x

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Пример 47

 

 

61

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

lim

1 +

1

 

= e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x +

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

→ ∞

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

δ1 > 0

 

 

 

 

 

 

x (x > δ1) =

 

 

1 +

x

 

 

 

 

e < ε

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

такое, что

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

x

 

 

59

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Пример 48

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

lim

1 +

 

 

= e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

→−∞

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

δ2 > 0 такое, что

 

x (x <

δ2) =

 

 

1 +

x

 

 

 

e < ε

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

2}

 

 

 

 

 

 

 

1 +

 

 

 

 

 

 

 

 

 

 

 

 

={

1

 

x ( x > δ) =

 

1

 

 

e < ε.

 

 

 

 

 

 

δ=max δ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

| |

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Из выделенного синим цветом следует, по определению 57, что

 

 

 

1 x

 

lim

1 +

 

 

= e.

 

x

 

 

 

 

 

 

→∞

 

 

 

 

 

 

x

 

First Prev Next Last Go Back Full Screen Close Quit

3.14.Бесконечно малые функции.

Пусть f : A → B, A Rk, B R и x0 есть предельная точка множества A. Если множе-

ство A неограничено, то бесконечно удалён-

ная точка в пространстве Rk является пре-

дельной точкой множества A.

Пусть ω - предельная точка x0 множества A или бесконечно удалённая точка в пространстве Rk.

В дальнейшем запись lim f(x) означает

x→ω

lim f(x) или lim f(x).

x→x0 x→∞

First Prev Next Last Go Back Full Screen Close Quit

Определение 63. Функция f : A → B называется бесконечно малой при x → ω, если

lim f(x) = 0.

x→ω

Бесконечно малые функции при x → ω будем обозначать буквами α, β, γ, . . . .

First Prev Next Last Go Back Full Screen Close Quit

Теорема 28. Пусть f : A → B, A Rk, B R

и ω есть предельная точка множества A. Для того, чтобы

lim f(x) = a R,

x→ω

необходимо и достаточно, чтобы выполнялось равенство:

f(x) = a + α(x),

где α(x) есть бесконечно малая при x → ω.

First Prev Next Last Go Back Full Screen Close Quit

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]