- •Ростовский государственный строительный университет
- •Раздел 1. Ошибки измерений и меры точности
- •1.1. Общие сведения об измерениях
- •1.2. Виды ошибок измерений
- •1.3. Свойства случайных ошибок
- •1.4. Принцип арифметической средины
- •1.5. Меры точности результатов измерений
- •1.6. Вероятностное обоснование применения теории ошибок измерений
- •1.7. Определение вероятности отклонения случайной величины от ее математического ожидания
- •1.8. Предельная ошибка результата измерения
- •1.9. Абсолютные и относительные ошибки
- •1.10. Ошибки округления
- •1.11. Ошибки функций измеренных величин
- •1.12. Типовые примеры
- •1.12.1. Функция произведения непосредственно измеренного аргумента на постоянный коэффициент
- •1.12.2. Функция линейного вида
- •1.13. Средняя квадратическая ошибка простой арифметической средины
- •1.14. Формула Бесселя
- •1.15. Влияние систематических ошибок на точность отдельных измерений
- •1.16. Оценка точности функции при наличии систематических ошибок
- •1.17. Оценка точности равноточно измеренных величин при систематическом влиянии
- •1.18. Принцип равных влияний
- •Раздел 2. Обработка результатов неравноточных измерений
- •2.1. Неравноточные измерения и их веса
- •2.2. Общая арифметическая средина и ее свойства
- •2.3. Средняя квадратическая ошибка единицы веса
- •2.4. Вычисление весов функций
- •2.5. Вычисление ошибки единицы веса
- •2.5.3. Вычисление средней квадратической ошибки измерения углов в триангуляции
- •2.5.4. Вычисление ошибки единицы веса через отклонения от арифметической средины
- •II. Способ наименьших квадратов
- •3. Коррелатный способ уравнивания
- •3.1. Условные уравнения
- •3.2. Весовая функция
- •3.3. Нормальные уравнения коррелат
- •3.4. Составление нормальных уравнений коррелат
- •3.5. Решение нормальных уравнений по алгоритму Гаусса
- •3.6. Оценка точности по материалам уравнивания
- •3.7. Блок-схема коррелатного способа уравнивания
- •3.8. Уравнивание нивелирной сети коррелатным способом
- •3.9. Уравнивание геодезического четырехугольника коррелатным способом
- •4 Параметрический способ уравнивания
- •4.1. Параметрические уравнения
- •4.2. Нормальные уравнения
- •4.3. Составление нормальных уравнений
- •4.4. Весовая функция
- •4.5. Решение нормальных уравнений способом обращения
- •4.6. Оценка точности по материалам уравнивания
- •4.7. Блок-схема параметрического способа уравнивания
- •4.8. Уравнивание нивелирной сети параметрическим способом
- •4.9. Уравнивание углов на станции параметрическим способом
1.15. Влияние систематических ошибок на точность отдельных измерений
Закономерности возникновения случайных и систематических ошибок различны. Систематические ошибки подчиняются функциональным закономерностям, а случайные - статистическим. Рассмотрим влияние систематических ошибок на точность определения одного результата. Общая ошибка в этом случае составит
(1.73)
где i - случайная составляющая общей ошибки измерения;
i - систематическая составляющая.
В геодезической практике принято, если один из источников общей ошибки характеризуется средней квадратической ошибкой, не превышающей 1/3 средней квадратической ошибки, характеризующей другой источник, то первым можно пренебречь [ 3 ]
(1.74)
тогда
![]()
т.е. значение средней квадратической ошибки m, если пренебречь систематической ошибкой, уменьшится всего на 5%.
1.16. Оценка точности функции при наличии систематических ошибок
Определим совместное влияние случайных и систематических ошибок на отдельные результаты измерений. Будем считать, что общая ошибка содержит постоянную систематическую часть . Тогда ряд ошибок измерений предстанет в виде
(1.75)
где i - общая ошибка измерений;
i - случайная составляющая;
i - систематическая составляющая.
Равенства (1.75) почленно возведем в квадрат
(1.76)
Учитывая, что
2
n
, просуммируем полученные значения, а
сумму разделим на n
т.е.
(1.77)
Второй член правой части равенства (1.77) cогласно четвертому свойству случайных ошибок равен нулю. Переходя к средним квадратическим ошибкам, получим
(1.78)
Аналогично определяется средняя квадратическая ошибка функции
(1.79)
Первое слагаемое определяется согласно (1.47)
(1.80)
Величина систематической ошибки определится из следующего выражения [ 2 ]
(1.81)
Тогда
(1.82)
1.17. Оценка точности равноточно измеренных величин при систематическом влиянии
Пусть слагаемые x1, x2, ... , xn результаты равноточных измерений со средней квадратической ошибкой m и постоянной систематической ошибкой . Тогда при
y = x1 + x2 + ... + xn
имеем
(1.83)
где
а![]()
Тогда средняя квадратическая ошибка суммы составит
![]()
(1.84)
1.18. Принцип равных влияний
При проектировании геодезических работ рассчитывают точность предстоящих измерений, пользуясь формулами теории ошибок измерений. При этих расчетах встречается задача, в которой по известному виду функции F требуется рассчитать точность измерений аргументов. Чтобы иметь определенное решение, применяют принцип равных влияний.
Пусть дана функция общего вида
(1.86)
На основании равенства (1.47) средняя квадратическая ошибка функции общего вида определится
![]()
Предположим, что
![]()
Откуда
(1.87)
Эти соотношения позволяют вычислить средние квадратические ошибки аргументов при заданном My, т.е. определить необходимую точность измерений.
