Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Курсовая

.docx
Скачиваний:
34
Добавлен:
09.05.2015
Размер:
1.98 Mб
Скачать

Введение

Прогноз возникновения и развития стихийных природных и техногенных явлений на Земле приобретает в настоящее время все большую актуальность. Наиболее распространенными и опасными стихийными природными явлениями являются землетрясения, цунами, извержения вулканов, оползни, наводнения, штормы, засухи.

Ежегодно на Земле от катастрофических землетрясений гибнет в среднем около 30 тыс. человек. Экономический ущерб от сейсмических катастроф достигает сотни миллиардов долларов США или, в отдельных случаях, до 40 % национального достояния страны.

Прямой ежегодный ущерб от всех видов чрезвычайных явлений природы и техногенных катастроф составляет величину свыше триллиона долларов США, что на два порядка превышает затраты на создание аэрокосмической системы, обеспечивающей краткосрочный прогноз их возникновения. Предупреждать стихийные явления и техногенные катастрофы, на основе мониторинга их предвестников ослаблять их последствия и быть готовыми к ним - экономически более выгодно, чем реагировать на их последствия.

Аэрокосмические средства наблюдения, обладая возможностью глобального мониторинга поверхности Земли, атмосферы, околоземного пространства, обеспечивают выявление краткосрочных предвестников и надежный прогноз землетрясений, цунами и других глобальных геофизических явлений и оперативную передачу данных мониторинга практически в любую точку земного шара. В данной работе рассмотрены особенности применения космического мониторинга для оценки стихийных природных явлений.

.1 Основное понятие космического мониторинга

Космический мониторинг - мониторинг с помощью космических средств наблюдений.

Космический мониторинг позволяет оперативно выявлять очаги и характер изменений окружающей среды, прослеживать интенсивность процессов и амплитуды экологических сдвигов, изучать взаимодействие техногенных систем.

Мониторинг предполагает не только наблюдение за процессом или явлением, но также его оценку, прогноз распространения и развития, а кроме того - разработку системы мер по предотвращению опасных последствий или поддержанию благоприятных тенденций. Таким образом, оперативное картографирование становится средством контроля за развитием явлений и процессов и обеспечивает принятие управленческих решений.

Материалы дистанционного зондирования получают в результате неконтактной съемки с летательных воздушных и космических аппаратов, судов и подводных лодок, наземных станций. Получаемые документы очень разнообразны по масштабу, разрешению, геометрическим, спектральным и иным свойствам. Все зависит от вида и высоты съемки, применяемой аппаратуры, а также от природных особенностей местности, атмосферных условий и т.п. Главные качества дистанционных изображений, особенно полезные для составления карт, - это их высокая детальность, одновременный охват обширных пространств, возможность получения повторных снимков и изучения труднодоступных территорий. [3] Благодаря этому данные дистанционного зондирования нашли в картографии разнообразное применение: их используют для составления и оперативного обновления топографических и тематических карт, картографирования малоизученных и труднодоступных районов (например, высокогорий). Наконец, аэро‒ и космические снимки служат источниками для создания общегеографических и тематических фотокарт. Съемки ведут в видимой, ближней инфракрасной, тепловой инфракрасной, радиоволновой и ультрафиолетовой зонах спектра. При этом снимки могут быть черно-белыми зональными и панхроматическими, цветными, цветными спектрозональными и даже - для лучшей различимости некоторых объектов - ложноцветными, т.е. выполненными в условных цветах. Следует отметить особые достоинства съемки в радиодиапазоне. Радиоволны, почти не поглощаясь, свободно проходят через облачность и туман. Ночная темнота тоже не помеха для съемки, она ведется при любой погоде и в любое время суток.

Главные достоинства аэроснимков, космических снимков и цифровых данных, получаемых в ходе дистанционного зондирования, - их большая обзорность и одномоментностъ. Они покрывают обширные, в том числе труднодоступные, территории в один момент времени и в одинаковых физических условиях. Снимки дают интегрированное и вместе с тем генерализованное изображение всех элементов земной поверхности, что позволяет видеть их структуру и связи. Очень важное достоинство - повторность съемок, т.е. фиксация состояния объектов в разные моменты времени и возможность прослеживания их динамики.

.2 Развитие современных космических средств мониторинга

Внедрение космических технологий для наблюдения, контроля и предвидения опасных процессов и явлений природы в целях предупреждения и ликвидации бедствий началось относительно недавно. Важность этого направления в деле защиты населения и территорий от природных и техногенных чрезвычайных ситуаций нашла свое отражение и в распоряжении Президента Российской Федерации от 23 марта 2000 г . № 86-рп, определившем необходимость и порядок создания в стране системы мониторинга и прогнозирования чрезвычайных ситуаций.[7]

Развитие космических средств мониторинга Земли дает принципиально новую возможность решения крайне сложной проблемы прогнозирования и предупреждения стихийных природных явлений и техногенных катастроф. Современные космические средства наблюдения, обладая возможностью глобального мониторинга поверхности Земли, атмосферы и околоземного пространства, в совокупности с воздушными и наземными средствами могут в конечном итоге обеспечить выявление краткосрочных предвестников и надежный прогноз землетрясений, цунами и других глобальных геофизических явлений, а также оперативную передачу данных мониторинга практически в любую точку земного шара. Уверенность в этом нам придает достигнутый за последние 5‒7 лет значительный прогресс в понимании процессов, предопределяющих зарождение негативных геофизических явлений, в определении их предвестников.

Наводнения

В настоящее время наводнения - одно из самых разрушительных стихийных бедствий, представляющих угрозу не только природным и хозяйственным объектам, но и населению. Для России такое бедствие может возникнуть во время весенних пойменных разливов на реках от снеготаяния или во время сильных летних ливней. Для предотвращения тяжелых последствий этого явления необходима оперативная оценка обстановки на пойменных территориях крупных рек страны. Традиционные методы сбора информации о наводнениях не отвечают современным требованиям и не позволяют оперативно принимать управляющие решения по предупреждению наводнений и ликвидации их последствий. Своевременное получение необходимой информации может обеспечить использование данных космической съемки, которая позволяет получить интересующую информацию в краткие сроки и обеспечить охват территорий, пострадавших от наводнений.[7]

Реализация разработанной в НЦ ОМЗ технологической схемы космического мониторинга наводнений с привлечением средств ERDAS IMAGINE и ArcView GIS и использованием данных разного разрешения с российских и зарубежных космических аппаратов даёт возможность получать оценки состояния территорий на всех этапах наблюдений: при прогнозе наводнений, во время и после прохождения паводка. Комплексное использование этих данных позволяет оценивать процесс наводнений на глобальном, региональном, локальном (бассейн реки) и детальном уровнях. Разработанная технология позволяет решать следующие задачи: вычисление степени затопления пойм; подсчёт затопленных площадей; оценка последствий затоплений и нанесенного ущерба; изучение динамики наводнений.

Наиболее важными регионами регулярного сезонного мониторинга для оценки паводковой ситуации являются Волго-Ахтубинская пойма, верховья Северной Двины, Окский бассейн и др.

В настоящее время основными источниками информации являются данные, получаемые в результате запланированного цикла съемок с российских КА «Метеор-М» №1 и «Ресурс-ДК». [10] Примеры съёмок представлены на рисунках 1-2.

Рисунок 1‒ Россия, Астраханская обл., данные КМСС/Метеор ‒ М №1, съёмка 03.04.2010.

Рисунок 2 ‒ Россия, среднее течение р. Волги, данные КМСС/Метеор ‒ М №1, съёмка 04.04.2010.

Лесные пожары

Лесные пожары - низовые, верховые, подпочвенные и др. - представляют собой опасные стихийные бедствия, приносящие огромный ущерб и создающие угрозу для людей, находящихся вблизи районов возникновения и распространения пожаров. При верховом пожаре происходит горение деревьев снизу доверху, при низовом пожаре горят сухая трава, мох, лишайник, кустарник. При почвенных лесных пожарах, возникающих, как правило, вследствие низовых пожаров, происходит горение торфа и торфяных почв на глубине их залегания. Возникновение и распространение лесных пожаров зависят от климатических условий, скорости ветра, рельефа местности и других условий. По площади горения различают отдельные, массовые, сплошные пожары и огненные штормы.

Для мониторинга лесных пожаров используются данные высокого разрешения, получаемые аппаратурой МСУ-Э (КА «МЕТЕОР-М» №1), которые позволяют оценить размеры бедствия в более крупном масштабе. Эти данные обеспечивают мониторинг локального уровня с детализацией картины горения и более точным определением площади выгоревших участков леса, что очень важно на этапе оценки последствий лесных пожаров. Материалы съемки, получаемой с КА «Метеор-М» №1, оперативно предоставляются специальным службам, прежде всего, в МЧС. [10]Примеры на рисунках 3-4.

Рисунок 3 ‒ Пожарная ситуация на 14 июля 2010 года.

Рисунок 4 ‒ Пожарная ситуация на 19 июля 2010 года.

Заключение

космический мониторинг стихийный природный

Космический мониторинг земной поверхности предоставляет очень ценную и достоверную информацию. Космические фотографии отличаются значительной обзорностью, информативностью и хорошим отражением на них взаимосвязей между компонентами природной среды. Они позволяют оперативно изучать многие природные процессы и явления в их динамике.

Изучено развитие современных космических средств мониторинга. Несмотря на относительно короткий срок от начала его внедрения, человечество достигло немалых успехов в этой области. Крупнейшим проектом по созданию глобальной системы прогнозирования природных и техногенных катастроф является МАКСМ - Международной аэрокосмической системы мониторинга глобальных явлений. По словам директора НИИ КС В.А. Меньшикова, объединение в этом масштабном проекте усилий мирового сообщества под решение столь крупной проблемы планетарного масштаба с концентрацией экономических, научно-технических, интеллектуальных и административных ресурсов и использованием космоса под решение сугубо мирной задачи в интересах всего Человечества может стать реальной альтернативой идеям милитаризации космического пространства, с его превращением в арену военного и информационного противоборства, к чему ведут нынешние амбициозные американские планы создания Глобальной системы противоракетной обороны с элементами космического базирования

Проанализировано практическое применение космических средств мониторинга для оценки стихийных природных явлений, таких как наводнения, землетрясения, вулканы, лесные пожары и т.п. Совместное использование данных разных космических систем позволяет обеспечить практически непрерывный мониторинг окружающей среды и земной поверхности, получение всесторонних оценок состояния природных объектов и явлений, контроль чрезвычайных ситуаций и т.п.

Мониторинг предполагает не только наблюдение за процессом или явлением, но также его оценку, прогноз распространения и развития, а кроме того - разработку системы мер по предотвращению опасных последствий или поддержанию благоприятных тенденций. Таким образом, оперативное картографирование становится средством контроля над развитием явлений и процессов и обеспечивает принятие управленческих решений.