
- •Содержание.
- •1. Оптимизация режимов энергосистем 6
- •2. Автоматизированные системы управления (асу). 53
- •Введение
- •1. Оптимизация режимов энергосистем
- •1.1. Параметры режима эс
- •1.2. Формулировка задачи оптимизации
- •1.3. Особенности задачи нелинейного программирования
- •1.4. Методы безусловной оптимизации
- •1.4.1. Метод покоординатного спуска
- •1.4.2. Градиентный метод
- •1.4.3. Метод случайного поиска
- •1.4.4. Метод деформированного многогранника
- •1.5. Оптимизация с учетом ограничений в форме равенств
- •1.5.1. Метод прямой оптимизации
- •1.5.2. Метод приведенного градиента
- •1.5.3. Метод неопределенных множителей Лагранжа
- •1.6. Оптимизация с учетом ограничений в форме неравенств
- •1.7. Условия оптимального распределения нагрузки между параллельно работающими блоками
- •1.8. Характеристики основного оборудования тэс
- •1.9. Характеристики блоков
- •1.10. Маневренные свойства блока
- •1.11. Методы распределения нагрузки между блоками на кэс
- •1.11.1. Графический метод.
- •1.11.2. Распределение с помощью эвм.
- •1.12. Влияние погрешностей в определении на пережог топлива
- •1.13. Условие оптимального распределения в системе с тэс
- •1.14. Условия распределения мощности и энергии с учетом рынка перетоков
- •1.15. Определение удельных приростов потерь
- •1.16. Мероприятия по снижению потерь в сети
- •1.17. Распределение нагрузки в системе с гэс
- •1.18. Определение характеристик гэс
- •1.19. Распределение нагрузки в системе с гэс
- •1.19.1. Применение динамического программирования для выбора графика сработки водохранилища для гэс
- •1.20. Оптимизация реактивной мощности в системе
- •1.21. Комплексная оптимизация режима
- •1.22. Выбор состава включенного в работу оборудования.
- •1.23. Применение эвм для оптимизации
- •1.24. Оптимизация надежности
- •1.24.1. Выбор оптимального аварийного резерва
- •1.24.2. Определение дискретных рядов аварийного выхода и снижения нагрузки
- •1.25. Оптимизация качества электроэнергии.
- •1.26. Интегральный критерий качества.
- •1.27. Определение оптимального напряжения для осветительной нагрузки.
- •2. Автоматизированные системы управления (асу).
- •2.1. Энергосистема как объект управления.
- •2.2. Подсистемы асу тп.
- •2.3. Подсистемы технического обеспечения.
- •2.3.1. Датчики электрических параметров.
- •2.3.2. Счетчики.
- •2.3.3. Устройства преобразования информации.
- •2.3.4. Средства связи в асу и телемеханика.
- •2.3.5. Регистраторы событий.
- •2.3.6. Автоматизированные системы контроля и учета электроэнергии (аскуэ).
- •2.3.7. Средства отображения информации.
- •2.3.8. Информационное обеспечение.
- •2.4. Подсистемы программного обеспечения асу.
- •Иоасу “Энергия”
- •2.5. Асу тп тэс.
- •2.6. Асу пэс
- •2.7. Асу тп подстанций.
- •2.8. Контроль за работой пэ энергосистемы.
Иоасу “Энергия”
Интегрированная отраслевая АСУ “Энергия”– система, которая разрабатывалась с 70-х годов в Минэнерго для автоматизации управления отраслью. Система включает:
Планирование развития – предназначено для поиска наилучших вариантов развития на основе использования современных экономико-математических методов и техники, т.е. САПР. Реализуется в проектных организациях Минэнерго.
Планирование и управление хозяйственной деятельностью, включая ближайшее планирование, т.е. материально-техническое снабжение, финансовые потоки: бухгалтерия, кадры и т.д.
АСДУ – предназначено для управления текущим режимом (Real Time) и планирование на ближайшую перспективу.
Повышение квалификации и подготовка кадров, тренаж и обучение. После 1986 года стало уделяться большое внимание повышению квалификации персонала.
АСДУ предназначено для организации согласованной работы всех устройств, связанных с обеспечением нормальной работы, включая основные регуляторы, РЗ и противоаварийную автоматику, а также оперативный персонал. Источником информации для управления является УТМ и линии связи. Основу АСДУ составляет ОИК – оперативно-информационный комплекс, связанный со сбором, передачей, хранением информации. Работа ОИК обеспечивается специальными программами. Существует несколько разработчиков и типов ПО. На Урале находи применение ОИК “Диспетчер” фирмы “Интерфейс”, ОИК КИО – комплекс информационного обеспечения разработанный АО Свердловэнерго. КИО – 3 работает в операционной среде MS DOS.
Структура КИО-3:
МК – мостовой компьютер,
ФС – файл-сервер,
ЦК – циклический компьютер,
РС – рабочие станции,
ДЩ – диспетчерский щит,
БУЩ – блок управления щитом.
Вся информация от УТМ поступает в МК, где осуществляется первичная обработка информации: фильтрация, проверка достоверности. Организуются архивирование данных, работа сигнальной системы и другие функции. К МК могут подключаться различные УТМ: ГРАНИТ, КОМПАС, УКТУС, ТМ-512, RPT и др. со стандартным выходом RS-232, RS-485 и др.
Файл-сервер – это устройство для хранения (мощный компьютер) ПО и информации доступной для всех объектов локальной сети.
ЦК предназначен для решения больших задач.
РС (до нескольких сотен) размещают в разных службах, предназначены для принятия решений на основе анализа текущей информации, выполнения каких-либо расчетов и разработки форм, программ и т.д. Часть РС оснащается сигнальной системой, которая запускается по факту появления какого-либо события, например работы РЗ и ПА. На РС информация о режиме представляется в наиболее наглядной форме. Представление информации должно соответствовать требованиям эргономики, определяющей наиболее приемлемые для человека объемы информации, цвета; размещается информации на экране. Число экранных страниц может достигать нескольких сотен. Таким образом, обеспечивается практически безбумажная технология информационного обеспечения оперативного персонала. Часть информации выдается на ДЩ – это основной объем ТС, в основном положения выключателей, а часть - на экранные страницы – расчет технико-экономических показателей или основные ТИ.