- •Тема 1 Предмет и метод статистики: определение, области применения, основные понятия
- •1.1 Статистика как форма практической деятельности. Статистика как наука: определение, области применения. Основные разделы статистической науки.
- •1.2. Объект, признаки совокупности, их виды. Методы статистики. Закон больших чисел и его роль в статистике. Генеральная и выборочная совокупности.
- •1.3 Методология и методы статистики.
- •1.4 Понятие официальной и неофициальной статистики. Ошибки при сборе и обработке статистического материала.
- •Тема 2. Статистические наблюдение, группировка, таблицы, графики
- •2.3. Статистическая сводка: определение, виды сводок (простая, сложная, централизованная и децентрализованная), программа проведения.
- •2.4. Статистическая группировка. Задачи группировок. Рекомендации по проведению группировок.
- •2.6. Табличный метод в статистике.
- •2.7. Графический метод в статистике
- •Тема 3. Абсолютные и относительные величины
- •3.1 Значение для управления и принципы формирования системы показателей статистики
- •Признаки классификации статистических показателей
- •3.2 Абсолютные величины: определение, виды: индивидуальные, сводные (объемные), расчетные. Единицы измерения абсолютных показателей.
- •Тема 4. Вариационные ряды, показатели вариации
- •4.2. Показатели вариации для характеристики вариационных рядов
- •4.3. Средние величины: определение; основное условие их применения; виды средних (простых и средневзвешенных). Правило мажорантности средних.
- •4.4. Дисперсия: способы ее расчета, виды дисперсии, правило сложения дисперсии.
- •4.5. Мода и медиана: определение, основное условие для применения, расчет показателей для дискретных и непрерывных вариационных рядов.
- •4.6. Симметричные и асимметричные распределения. Показатели асимметрии и эксцесса для характеристики асимметричных рядов распределения.
- •Тема 5. Выборочное наблюдение
- •5.2 Определение способом повторного и бесповторного отбора по генеральной совокупности средней, предельной и относительной ошибок средней с учетом заданного доверительного интервала.
- •5.4 Понятие малой выборки. Определение средней и предельной ошибок по малой выборке с учетом заданного доверительного интервала.
- •Тема 6. Индексный метод
- •6. 1 Индексный метод: определение, области применения, виды индексов
- •Признаки классификации экономических индексов
- •6.3 Индексный анализ динамики среднего уровня ряда (арифметического и гармонического индексов). Индексы качественных показателей (переменного, постоянного состава, структурных сдвигов).
- •Тема 7. Ряды динамики
- •7.1 Понятие и классификация рядов динамики: основные элементы и виды
- •7.3 Методы выявления тенденций (метод укрупнения интервалов, метод скользящей средней).
- •Тема 8. Статистические методы изучения взаимосвязи между явлениями. Корреляционно-регрессионный анализ.
- •8.2 Корреляционно-регрессионный анализ: области применения, основные этапы и требования проведения анализа.
- •8.3 Корреляционно-регрессионный анализ: аналитическое выражение уравнения (прямолинейной, криволинейной) регрессии для однофакторной корреляционно-регрессионной модели.
- •8.5 Показатели тесноты корреляционной связи для многофакторной корреляционно-регрессионной модели.
4.4. Дисперсия: способы ее расчета, виды дисперсии, правило сложения дисперсии.
Моменты распределения
Дисперсия обладает рядом математических свойств, позволяющих упростить ее расчет.
Первое свойство заключается в том, что если из всех вариант вычесть какое-то постоянное число, то дисперсия от этого не изменится. Оно позволяет рассчитывать дисперсию не по отклонениям вариант от средней (часто имеющей дробное значение), а по отклонениям от целого числа. Второе свойство позволяет все варианты разделить на какое-то постоянное число, например на значение интервала, и исчислить дисперсию уменьшенных вариант, а полученную величину умножить на квадрат этого числа.
, .
где: 2x – дисперсия отклонений вариантов от средней арифметической;
–дисперсия отклонений вариантов от произвольной величины А.
1. На этих свойствах основан расчет дисперсии способом отсчета от условного нуля или способ моментов, который заключается в нахождении вариант, уменьшенных на условно постоянную величину А и в k раз, где k – интервал, т.е. х1=(х – А)/k, и последующем расчете дисперсии по формуле:
способ отсчета от условного нуля: ;
способ моментов: , где
условный момент первого порядка: ;
условный момент второго порядка: ,
2. Дисперсия равна среднему квадрату значений признака за вычетом квадрата среднего значения признака:
Расчеты дисперсии различными способами дают одинаковые результаты, что позволяет исследователю выбрать наиболее эффективный способ.
В ряде случаев изучают не среднюю величину признака, а долю единиц, обладающих тем или иным признаком. Например, доля междугородных телефонных соединений (разговоров), предоставленных с ожиданием до 1 часа. Это примеры альтернативных вариаций, когда имеются лишь два взаимоисключающих варианта: наличие или отсутствие признака у данной единицы совокупности (1 наличие признака, 0 отсутствие). В таких случаях определяется дисперсия альтернативного признака. Пусть доля единиц, обладающих данным признаком, равна р, а доля единиц, не обладающих этим признаком, 1–р, тогда
Естественно, средняя постоянная величины р есть сама эта величина, а дисперсия равна:
Средняя и дисперсия это частные случаи более широкого понятия обобщающих характеристик любого распределения моментов.
Момент распределения – это средняя арифметическая тех или иных степеней отклонений вариантов х от некоторой постоянной величины А:
z = .
Порядок момента определяется величиной z, т.е. степенью, в которую возводится отклонение вариант. В зависимости от принятой величины А различают три вида моментов:
начальные (при А=0): ; центральные (при А=): ;
условные (при А≠0, А≠): .
Начальный момент первого порядка представляет собой среднюю арифметическую: ;
центральный момент второго порядка – дисперсию: . Центральный момент первого порядка 1 всегда равен нулю (сумма отклонений вариант от средней равна нулю); центральный момент третьего порядка равен нулю в симметричном распределении.
Условные моменты самостоятельного значения не имеют, ими пользуются для упрощения вычисления центральных моментов: 2 = m2 – m21; 3 = m3 – 3m1 m2 + 2m31; 4 = m4 – 4m3 m1 + 6m2 m21 – 3 m41.
Для исчисления условных моментов используется условная величина:
; ; ; ; где
В этом случае центральные моменты корректируются на величину kz:
2 = (m2 – m12)k2; 3 = (m3 – 3m1 m2 + 2m13)k3;
4 = (m4 – 4m3 m1 + 6m2 m21 – 3 m41)k4.
Наряду с изучением вариации признака по всей совокупности в целом часто возникает необходимость проследить количественные изменения признака по группам, на которые разбита вся совокупность, а также и между группами. Такое изучение вариации достигается посредством вычисления и анализа различных дисперсий: общей, межгрупповой, внутригрупповой и средней из внутригрупповых дисперсий.
Общая дисперсия измеряет вариацию признака во всей совокупности под влиянием всех факторов, обусловливающих эту вариацию:
.
Межгрупповая дисперсия характеризует систематическую вариацию, т.е. различия в величине изучаемого признака, возникающие под влиянием признака-фактора, положенного в основание группировки:
, где
- соответственно средние и численности по отдельным группам,
- средняя всей совокупности.
Внутригрупповая дисперсия отражает случайную вариацию, т.е. часть вариации, происходящую под влиянием неучтенных факторов и не зависящую от признака-фактора, положенного в основу группировки:
, где
- варианты групп, - численность группы,- средняя группы
Средняя из внутригрупповых дисперсий определяется по формуле:
.
Общая дисперсия определяется как сумма средней из внутригрупповых дисперсий и межгрупповой дисперсии:
.
Данная сумма называется правилом сложения дисперсий.
Согласно этому правилу общая дисперсия, возникающая под влиянием всех факторов, равна сумме дисперсий, возникающих под влиянием прочих факторов, и дисперсии, возникающей за счет группировочного признака.
На основании правила сложения дисперсий можно определить показатель тесноты связи между группировочным (факторным) и результирующим признаками. Он называется эмпирическим корреляционным отношением и рассчитывается как корень квадратный из отношения межгрупповой дисперсии к общей дисперсии:
.
Отношения межгрупповой дисперсии к общей дисперсии называется эмпирическим коэффициентом детерминации и показывает долю группировочного признака в общей вариации:
.