
- •1. Введение
- •1.1 Что такое цифровые микросхемы. Виды цифровых микросхем
- •1.2 Области применения цифровых микросхем
- •1.3 Виды цифровых микросхем.
- •Условные графические изображения цифровых микросхем (гост)
- •Параметры цифровых микросхем
- •Уровни логического нуля и единицы
- •Входные и выходные токи цифровых микросхем
- •Параметры, определяющие быстродействие цифровых микросхем
- •Описание логической функции цифровых схем
- •Логические элементы.
- •2.1 Логические элементы
- •Инвертор
- •Логический элемент "и"
- •Логический элемент "или"
- •2.2 Диодно-транзисторная логика (дтл)
- •2.3 Транзисторно-транзисторная логика (ттл)
- •2.4 Цифровые логические микросхемы, выполненные на комплементарных моп транзисторах (кмоп) Логические кмоп (кмдп) инверторы
- •Логические кмоп (кмдп) элементы "и"
- •Логические кмоп (кмдп) элементы "или"
- •Особенности применения кмоп микросхем
- •Логические уровни кмоп микросхем
- •2.5 Согласование цифровых микросхем различных серий между
- •Согласование микросхем из различных серий между собой
- •Согласование микросхем с различным напряжением питания
- •Глава 2
- •2.6 Триггер Шмитта
- •3.Арифметические основы цифровой техники.
- •Глава 1 Арифметические основы цифровой техники
- •3.1 Системы счисления
- •Десятичная система счисления
- •Двоичная система счисления
- •4.2 Синтез цифровых комбинационных схем по произвольной таблице истинности
- •Совершенная дизъюктивная нормальная форма (сднф)
- •Совершенная конъюктивная нормальная форма (скнф)
- •4.3 Дешифраторы (декодеры)
- •Десятичный дешифратор (декодер)
- •4.5 Мультиплексоры
- •Особенности построения мультиплексоров на ттл элементах
- •4.6 Демультиплексоры
- •5.Генераторы
- •5.1 Генераторы периодических сигналов
- •5.3 Мультивибраторы
- •5.4 Особенности кварцевой стабилизации частоты цифровых генераторов
- •5.5 Одновибраторы (ждущие мультивибраторы)
- •Укорачивающие одновибраторы
- •Расширяющие одновибраторы (ждущие мультивибраторы)
- •6. Последовательностные устройства (цифровые устройства с памятью)
- •6.1 Триггеры
- •6.1.2 Rs триггер
- •6.1.3 D триггеры, работающие по потенциалу (статические d триггеры)
- •6.1.5 D триггеры, работающие по фронту (динамические d триггеры)
- •6.1.6 T триггеры
- •6.1.7 Jk триггер
- •6.2 Регистры
- •6.2.1 Параллельные регистры
- •6.2.2 Последовательные (сдвиговые) регистры
- •6.2.3 Универсальные регистры
- •6.3 Счётчики
- •6.3.1 Двоичные асинхронные счётчики
- •6.3.2 Недвоичные счётчики с обратной связью
- •6.3.3 Недвоичные счётчики с предварительной записью
- •6.3.5 Синхронные двоичные счётчики
- •7.Современные виды цифровых микросхем.
- •7.1 Микросхемы малой степени интеграции (малая логика)
- •7.2 Программируемые логические интегральные схемы (плис).
- •7.3 Программируемые логические матрицы.
- •7.4 Программируемые матрицы логики (pal).
- •7.5 Сложные программируемые логические устройства (cpld).
- •10. Особенности аналого-цифрового и цифро-аналогового преобразования.
- •10.1 Квантование аналогового сигнала по времени
- •10.2 Погрешности дискретизатора
- •10.3 Фильтры устранения эффекта наложения спектров (Антиалайзинговые фильтры)
- •10.5 Параллельные ацп (flash adc)
- •10.6 Последовательно-параллельные ацп
- •10.7 Ацп последовательного приближения (sar adc)
- •10.9 Цифроаналоговые преобразователи (цап) с суммированием токов
- •10.10 Цифроаналоговые преобразователи r-2r
- •11. Микросхемы цифровой обработки сигналов
- •11.1 Основные блоки цифровой обработки сигналов
- •11.1.1 Двоичные сумматоры
2.5 Согласование цифровых микросхем различных серий между
При составлении цифровых схем стараются использовать микросхемы одной серии. Однако это не всегда удаётся. Применять микросхемы других серий приходится:
когда требуются микросхемы, отсутствующие в данной серии микросхем;
когда отдельные узлы схемы должны работать на повышенной частоте;
при работе на внешние устройства могут потребоваться микросхемы с повышенной нагрузочной способностью.
Первый пункт не требует комментариев. Обычно малым количеством микросхем характеризуются серии с повышенным быстродействием или с повышенной нагрузочной способностью. Серии микросхем с малым количеством микросхем также обычно характеризуются высокой стоимостью. Так что первый пункт жёстко связан с оставшимися двумя пунктами.
Что касается второго пункта, то выбор микросхем из различных серий может быть обусловлен двумя причинами.
Первая причина — это стоимость цифрового устройства в целом. Микросхемы с повышенным быстродействием стоят дороже микросхем со средним быстродействием. Микросхемы в цифровых устройствах обычно работают на разных частотах. При этом на повышенной частоте работает не более одного процента от общего количества микросхем. В результате применение микросхем с различным быстродействием может существенно снизить стоимость цифрового устройства.
Вторая причина — это ток потребления микросхем. В ТТЛ, p-МОП и n-МОП сериях микросхем ток их потребления определяется быстродействием. Чем ниже быстродействие микросхемы (в пределах одной технологии), тем меньше её ток потребления. Это не относится к КМОП сериям микросхем. В микросхемах, выполненных по КМОП технологии, ток потребления зависит от частоты, на которой работает в данный момент микросхема. Чем выше частота переключения логических элементов КМОП микросхемы, тем выше ток потребления этой микросхемы. То есть ток потребления в этих микросхемах регулируется автоматически, и причиной выбора конкретной серии микросхем остается только их стоимость.
Микросхемы с повышенной нагрузочной способностью обычно входят в состав любой серии микросхем, однако иногда требуются ещё большие токи. В этом случае можно использовать микросхемы из серий с повышенным быстродействием, например К1531. При необходимости формирования на выходе микросхемы потенциалов, превышающих напряжение питания цифровой микросхемы, можно применить микросхемы с открытым коллектором. В крайнем случае для согласования микросхемы по току или напряжению можно применитьтранзисторный ключ.
Согласование микросхем из различных серий между собой
Рассмотрим сначала микросхемы, совместимые с ТТЛ микросхемами по питанию. Выбор ТТЛ микросхем связан с тем, что ТТЛ логические уровни стали стандартом для современной техники. Даже если микросхемы внутри выполнены по КМОП технологии, они обычно формируют на выходе логические уровни, совместимые с ТТЛ уровнями.
Стандартные ТТЛ микросхемы — это микросхемы, питающиеся от источника напряжения +5В. Зарубежные ТТЛ микросхемы получили название SN74. Конкретные микросхемы этой серии обозначаются цифровым номером микросхемы, следующим за названием серии. Например, в микросхеме SN74S00 содержится четыре логических элемента "2И-НЕ". Аналогичные микросхемы с расширенным температурным диапазоном получили название SN54.
Отечественные микросхемы, совместимые с SN74 выпускались в составе серий К134 (низкое быстродействие низкое потребление - SN74L), К155 (среднее быстродействие среднее потребление - SN74) и К131 (высокое быстродействие и большое потребление). Затем были выпущены микросхемы повышенного быстродействия с диодами Шоттки. В названии зарубежных микросхем в обозначении серии появилась буква S. Отечественные серии микросхем сменили цифру 1 на цифру 5. Выпускаются микросхемы серий К555 (низкое быстродействие низкое потребление - SN74LS) и К531 (высокое быстродействие и большое потребление - SN74S).
В настоящее время отечественная промышленность производит микросхемы серий К1533 (низкое быстродействие низкое потребление - SN74ALS) и К1531 (высокое быстродействие и большое потребление - SN74F).