
- •1. Введение
- •1.1 Что такое цифровые микросхемы. Виды цифровых микросхем
- •1.2 Области применения цифровых микросхем
- •1.3 Виды цифровых микросхем.
- •Условные графические изображения цифровых микросхем (гост)
- •Параметры цифровых микросхем
- •Уровни логического нуля и единицы
- •Входные и выходные токи цифровых микросхем
- •Параметры, определяющие быстродействие цифровых микросхем
- •Описание логической функции цифровых схем
- •Логические элементы.
- •2.1 Логические элементы
- •Инвертор
- •Логический элемент "и"
- •Логический элемент "или"
- •2.2 Диодно-транзисторная логика (дтл)
- •2.3 Транзисторно-транзисторная логика (ттл)
- •2.4 Цифровые логические микросхемы, выполненные на комплементарных моп транзисторах (кмоп) Логические кмоп (кмдп) инверторы
- •Логические кмоп (кмдп) элементы "и"
- •Логические кмоп (кмдп) элементы "или"
- •Особенности применения кмоп микросхем
- •Логические уровни кмоп микросхем
- •2.5 Согласование цифровых микросхем различных серий между
- •Согласование микросхем из различных серий между собой
- •Согласование микросхем с различным напряжением питания
- •Глава 2
- •2.6 Триггер Шмитта
- •3.Арифметические основы цифровой техники.
- •Глава 1 Арифметические основы цифровой техники
- •3.1 Системы счисления
- •Десятичная система счисления
- •Двоичная система счисления
- •4.2 Синтез цифровых комбинационных схем по произвольной таблице истинности
- •Совершенная дизъюктивная нормальная форма (сднф)
- •Совершенная конъюктивная нормальная форма (скнф)
- •4.3 Дешифраторы (декодеры)
- •Десятичный дешифратор (декодер)
- •4.5 Мультиплексоры
- •Особенности построения мультиплексоров на ттл элементах
- •4.6 Демультиплексоры
- •5.Генераторы
- •5.1 Генераторы периодических сигналов
- •5.3 Мультивибраторы
- •5.4 Особенности кварцевой стабилизации частоты цифровых генераторов
- •5.5 Одновибраторы (ждущие мультивибраторы)
- •Укорачивающие одновибраторы
- •Расширяющие одновибраторы (ждущие мультивибраторы)
- •6. Последовательностные устройства (цифровые устройства с памятью)
- •6.1 Триггеры
- •6.1.2 Rs триггер
- •6.1.3 D триггеры, работающие по потенциалу (статические d триггеры)
- •6.1.5 D триггеры, работающие по фронту (динамические d триггеры)
- •6.1.6 T триггеры
- •6.1.7 Jk триггер
- •6.2 Регистры
- •6.2.1 Параллельные регистры
- •6.2.2 Последовательные (сдвиговые) регистры
- •6.2.3 Универсальные регистры
- •6.3 Счётчики
- •6.3.1 Двоичные асинхронные счётчики
- •6.3.2 Недвоичные счётчики с обратной связью
- •6.3.3 Недвоичные счётчики с предварительной записью
- •6.3.5 Синхронные двоичные счётчики
- •7.Современные виды цифровых микросхем.
- •7.1 Микросхемы малой степени интеграции (малая логика)
- •7.2 Программируемые логические интегральные схемы (плис).
- •7.3 Программируемые логические матрицы.
- •7.4 Программируемые матрицы логики (pal).
- •7.5 Сложные программируемые логические устройства (cpld).
- •10. Особенности аналого-цифрового и цифро-аналогового преобразования.
- •10.1 Квантование аналогового сигнала по времени
- •10.2 Погрешности дискретизатора
- •10.3 Фильтры устранения эффекта наложения спектров (Антиалайзинговые фильтры)
- •10.5 Параллельные ацп (flash adc)
- •10.6 Последовательно-параллельные ацп
- •10.7 Ацп последовательного приближения (sar adc)
- •10.9 Цифроаналоговые преобразователи (цап) с суммированием токов
- •10.10 Цифроаналоговые преобразователи r-2r
- •11. Микросхемы цифровой обработки сигналов
- •11.1 Основные блоки цифровой обработки сигналов
- •11.1.1 Двоичные сумматоры
Логический элемент "или"
Следующим простейшим логическим элементом является схема, реализующая операцию логического умножения "И":
F(x1,x2) = x1Vx2
где символ V обозначает функцию логического сложения. Иногда эта же функция записывается в другом виде:
F(x1,x2) = x1Vx2 = x1+x2 = x1|x2.
То же самое действие можно записать при помощи таблицы истинности, приведённой в таблице 4. В формуле, приведенной выше использовано два аргумента. Поэтому логический элемент, выполняющий эту функцию имеет два входа. Такой элемент обозначается "2ИЛИ". Для элемента "2ИЛИ" таблица истинности будет состоять из четырех строк (22 = 4).
Таблица 1.4. Таблица истинности схемы, выполняющей логическую функцию "2ИЛИ"
In1 |
In2 |
Out |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
Как и в случае, рассмотренном для схемы логического умножения, воспользуемся для реализации схемы "2ИЛИ" ключами. На этот раз соединим ключи параллельно. Схема, реализующая таблицу истинности 1.4, приведена на рисунке 1.5. Как видно из приведённой схемы, уровень логической единицы появится на её выходе, как только будет замкнут любой из ключей, то есть схема реализует таблицу истинности, приведённую в таблице 1.4.
Рисунок 1.5.
Принципиальная схема, реализующая
логическую функцию "2ИЛИ"
Так как функция логического суммирования может быть реализована различными принципиальными схемами, то для обозначения этой функции на принципиальных схемах используется специальный символ "1", как это приведено на рисунке 1.6.
Рисунок 1.6.
Условно-графическое изображение
логического элемента, выполняющего
функцию "2ИЛИ"
2.2 Диодно-транзисторная логика (дтл)
Наиболее простой логический элемент получается при помощи диодов. Схема базового логического элемента диодной логики приведена на рисунке 2.1.
Рисунок 2.1.
Принципиальная схема базового логического
элемента "2И", выполненного на
диодах
В схеме базового логического элемента на диодах при подаче нулевого потенциала на любой из входов (или на оба сразу) через резистор R1 будет протекать ток, и на его сопротивлении возникнет падение напряжения. В результате на выходе схемы базового логического элемента будет присутствовать единичный потенциал только если подать единичный потенциал сразу на оба входа микросхемы. То есть приведенная схема базового логического элемента реализует функцию "2И".
Количество входов логического элемента "И" зависит от количества диодов. Если использовать два диода, то получится логический элемент "2И", если три диода — то логический элемент "3И", если четыре диода, то логический элемент "4И", и так далее. В микросхемах средней интеграции выпускается максимальный логический элемент "8И".
К сожалению приведенные схемы логических элементов не могут каскадироваться, так как мощность сигнала при распространении по схеме уменьшается. Поэтому к схеме диодного логического элемента "И" обычно подключается двухтактный усилитель на биполярных транзисторах. Схема такого логического элемента приведена на рисунке 2.3.
Рисунок 2.3.
Принципиальная схема базового логического
элемента ДТЛ микросхемы
Обратите внимание, что транзистор VT1 инвертирует сигнал на выходе элемента "И". В результате вместо логической 1 на выходе присутствует логический 0. И наоборот, вместо логического нуля на выходе присутствует логическая единица, а схема в целом реализует логическую функцию "2И-НЕ":
Условно-графическое изображение ДТЛ логического элемента "2И-НЕ" показано на рисунке 2.4, а таблица истинности приведена в таблице 2.1
Рисунок 2.4.
Условно-графическое изображение
логического элемента "2И-НЕ"
Таблица 2.1. Таблица истинности схемы, реализующей логическую функцию "2И-НЕ"
x1 |
x2 |
F |
0 |
0 |
1 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
0 |
На основе базового элемента ДТЛ строится и инвертор. В этом случае на входе используется только один диод. Схема ДТЛ инвертора приведена на рисунке 2.5.
Рисунок 2.5.
Принципиальная схема инвертора ДТЛ
микросхемы