- •1. Введение
- •1.1 Что такое цифровые микросхемы. Виды цифровых микросхем
- •1.2 Области применения цифровых микросхем
- •1.3 Виды цифровых микросхем.
- •Условные графические изображения цифровых микросхем (гост)
- •Параметры цифровых микросхем
- •Уровни логического нуля и единицы
- •Входные и выходные токи цифровых микросхем
- •Параметры, определяющие быстродействие цифровых микросхем
- •Описание логической функции цифровых схем
- •Логические элементы.
- •2.1 Логические элементы
- •Инвертор
- •Логический элемент "и"
- •Логический элемент "или"
- •2.2 Диодно-транзисторная логика (дтл)
- •2.3 Транзисторно-транзисторная логика (ттл)
- •2.4 Цифровые логические микросхемы, выполненные на комплементарных моп транзисторах (кмоп) Логические кмоп (кмдп) инверторы
- •Логические кмоп (кмдп) элементы "и"
- •Логические кмоп (кмдп) элементы "или"
- •Особенности применения кмоп микросхем
- •Логические уровни кмоп микросхем
- •2.5 Согласование цифровых микросхем различных серий между
- •Согласование микросхем из различных серий между собой
- •Согласование микросхем с различным напряжением питания
- •Глава 2
- •2.6 Триггер Шмитта
- •3.Арифметические основы цифровой техники.
- •Глава 1 Арифметические основы цифровой техники
- •3.1 Системы счисления
- •Десятичная система счисления
- •Двоичная система счисления
- •4.2 Синтез цифровых комбинационных схем по произвольной таблице истинности
- •Совершенная дизъюктивная нормальная форма (сднф)
- •Совершенная конъюктивная нормальная форма (скнф)
- •4.3 Дешифраторы (декодеры)
- •Десятичный дешифратор (декодер)
- •4.5 Мультиплексоры
- •Особенности построения мультиплексоров на ттл элементах
- •4.6 Демультиплексоры
- •5.Генераторы
- •5.1 Генераторы периодических сигналов
- •5.3 Мультивибраторы
- •5.4 Особенности кварцевой стабилизации частоты цифровых генераторов
- •5.5 Одновибраторы (ждущие мультивибраторы)
- •Укорачивающие одновибраторы
- •Расширяющие одновибраторы (ждущие мультивибраторы)
- •6. Последовательностные устройства (цифровые устройства с памятью)
- •6.1 Триггеры
- •6.1.2 Rs триггер
- •6.1.3 D триггеры, работающие по потенциалу (статические d триггеры)
- •6.1.5 D триггеры, работающие по фронту (динамические d триггеры)
- •6.1.6 T триггеры
- •6.1.7 Jk триггер
- •6.2 Регистры
- •6.2.1 Параллельные регистры
- •6.2.2 Последовательные (сдвиговые) регистры
- •6.2.3 Универсальные регистры
- •6.3 Счётчики
- •6.3.1 Двоичные асинхронные счётчики
- •6.3.2 Недвоичные счётчики с обратной связью
- •6.3.3 Недвоичные счётчики с предварительной записью
- •6.3.5 Синхронные двоичные счётчики
- •7.Современные виды цифровых микросхем.
- •7.1 Микросхемы малой степени интеграции (малая логика)
- •7.2 Программируемые логические интегральные схемы (плис).
- •7.3 Программируемые логические матрицы.
- •7.4 Программируемые матрицы логики (pal).
- •7.5 Сложные программируемые логические устройства (cpld).
- •10. Особенности аналого-цифрового и цифро-аналогового преобразования.
- •10.1 Квантование аналогового сигнала по времени
- •10.2 Погрешности дискретизатора
- •10.3 Фильтры устранения эффекта наложения спектров (Антиалайзинговые фильтры)
- •10.5 Параллельные ацп (flash adc)
- •10.6 Последовательно-параллельные ацп
- •10.7 Ацп последовательного приближения (sar adc)
- •10.9 Цифроаналоговые преобразователи (цап) с суммированием токов
- •10.10 Цифроаналоговые преобразователи r-2r
- •11. Микросхемы цифровой обработки сигналов
- •11.1 Основные блоки цифровой обработки сигналов
- •11.1.1 Двоичные сумматоры
5.Генераторы
5.1 Генераторы периодических сигналов
При работе цифровых схем часто возникает задача синхронизации моментов изменения или записи сигналов. Для этого можно воспользоваться любым известным генератором периодических сигналов.
Генератор, в принципе, может быть построен на любом усилительном элементе, охваченном положительной обратной связью. Обобщённая схема генератора незатухающих колебаний приведена на рисунке 1.1.
Рисунок 1.1
Схема генератора.
Для самовозбуждения колебаний в такой схеме необходимо выполнить два условия:
Баланс фаз
Баланс амплитуд
Баланс амплитуд выполняется в случае, когда произведение коэффициента усиления усилителя K и коэффициента передачи цепи обратной связи b будет больше единицы:
![]()
Баланс фаз выполняется, если сумма фазового сдвига усилителя a и фазового сдвига цепи обратной связи j будет равным нулю или 360°:
![]()
В качестве усилительного элемента можно использовать любое устройство, обладающее усилением, в том числе транзистор или операционный усилитель. Однако в этом случае потребуется специальное устройство преобразования выходного сигнала генератора к цифровым логическим уровням, используемым в разрабатываемой схеме.
Намного проще было бы использовать для построения тактовых генераторов логические элементы. Так как любые логические элементы обладают усилением, то для построения генераторов можно использовать как инверторы, так и схемы логического "И-НЕ" и "ИЛИ-НЕ". В некоторых случаях для построения генераторов используют даже триггеры. Так как от параметров усилительного элемента в значительной степени зависят параметры генератора, то рассмотрим логический инвертор с точки зрения усилительных параметров.
5.3 Мультивибраторы
Еще одной распространённой схемой генераторов на логических элементах является схема мультивибратора. В этой схеме для реализации положительной обратной связи используется два инвертора. Каждый из усилителей осуществляет поворот фазы генерируемого сигнала на 180°. В результате реализуется баланс фаз. Схема мультивибратора приведена на рисунке 3.1.
Рисунок 3.1.
Схема мультивибратора, выполненная на
двух логических инверторах.
Коэффициент усиления каждого из усилителей определяется соотношением резисторов R2/R1 и R4/R3. В этой схеме возможна независимая регулировка частоты и скважности генерируемых колебаний. Длительность импульсов и длительность паузы между импульсами регулируется независимо при помощи RC цепочек R1 C2 и R3 C1. Период следования импульсов Т определяется как сумма двух времен заряда конденсаторов:
Т = tзар1 + tзар2,
где tзар1 = R2C2 ln(U1/Uпор); tзар2 = R4C1 ln(U1/Uпор).
5.4 Особенности кварцевой стабилизации частоты цифровых генераторов
При разработке кварцевого генератора следует обращать внимание, что кварцевый генератор на основе мультивибратора работает несколько по другим принципам по сравнению с осцилляторной схемой. Если в осцилляторной схеме кварцевый резонатор используется в качестве индуктивности, входящей в колебательный контур резонатора, то в схеме мультивибратора кварцевый резонатор используется в качестве узкополосного фильтра в цепи обратной связи. Это приводит к тому, что один и тот же резонатор, включённый в схему мультивибратора и осцилляторную схему, будет генерировать различные частоты!
Для того, чтобы разобраться с этим явлением, вспомним эквивалентную схему кварцевого резонатора и характеристику зависимости сопротивления кварцевого резонатора от частоты. Эквивалентная схема кварцевого резонатора приведена на рисунке 4.9 а, а характеристика зависимости сопротивления от частоты - на рисунке 4.9 б.
Рисунок
4.9.
а - эквивалентная схема кварцевого
резонатора;
б - зависимость сопротивления
кварцевого резонатора от частоты.
В схеме мультивибратора используется последовательный резонанс кварцевого резонатора (собственные колебания кристалла), а в осцилляторной схеме генерация производится на частоте, близкой к параллельному резонансу контура, образуемого индуктивностью резонатора и ёмкостью кварцедержателя. Эти частоты близки, но не могут совпадать по определению. В результате частоты генерируемых колебаний будут отличаться между собой. Обычно разность частот последовательного и параллельного резонансов составляет около 1 килогерца. Настолько же будут отличаться и частоты кварцевых генераторов, построенных по схеме мультивибратора и схеме ёмкостной трёхточки.
Так как генератор, собранный по схеме мультивибратора возбуждается на собственной частоте кварцевого кристалла, то стабильность кварцевого мультивибратора будет выше по сравнению с осцилляторной схемой, так как на частоту последовательного резонанса кварцевого резонатора не влияют внешние паразитные ёмкости. Однако в этой схеме возможно самовозбуждение генератора на частоте, далеко отстоящей от резонансной частоты кварцевого резонатора. Это обуславливается ёмкостью кварцедержателя, поэтому в схеме мультивибратора необходимо предусматривать специальные меры для борьбы с этим явлением.
При построении схем генераторов следует отметить, что они являются мощными источниками помех, поэтому эти генераторы обычно экранируют. Цепи питания микросхем, на которых реализуются генераторы обязательно содержат фильтрующие высокочастотные конденсаторы. Часто для лучшей фильтрации по цепи питания кроме конденсаторов используются фильтрующие дроссели.
Для уменьшения помех используются и конструктивные меры. Например, рядом с цепью генерируемого сигнала прокладывают корпусные проводники. Таким образом фактически образуется полосковая (или волноводная) линия передачи.
